engi231020p1c6

Tuesday, March 26, 2013
9:45 PM

Table 1-2 Programming Language Elements

Language Element Description

Key Words Words that have a special meaning. Key words may only be used for their
intended purpose. Key words are also known as reserved words.

Programmer-Defined Words or names defined by the programmer. They are symbolic names
Identifiers that refer to variables or programming routines.

Operators Operators perform operations on one or more operands. An operand is
usually a piece of data, like a number.

Punctuation Punctuation characters that mark the beginning or ending of a statement,
or separate items in a list.

Syntax Rules that must be followed when constructing a program. Syntax dictates
how key words and operators may be used, and where punctuation
symbols must appear.

Key Words (reserved words)

Three of C++'s key words appear on lines 3 and 5: using, namespace, and int. The word
double, which appears on line 7, is also a C++ key word. These words, which are always
written in lowercase, each have a special meaning in C++ and can only be used for their
intended purposes. As you will see, the programmer is allowed to make up his or her own

Programmer-Defined Identifiers

The words hours, rate, and pay that appear in the program on lines 7, 11, 15, 18, and 21
are programmer-defined identifiers. They are not part of the C++ language but rather are
names made up by the programmer. In this particular program, these are the names of
variables. As you will learn later in this chapter, variables are the names of memory loca-
tions that may hold data.

Operators
On line 18 the following statement appears:
pay = hours * rate;

The = and * symbols are both operators. They perform operations on pieces of data,

Punctuation

Notice that many lines end with a semicolon. A semicolon in C++ is similar to a period in
English. It marks the end of a complete sentence (or statement, as it is called in program-
ming). Semicolons do not appear at the end of every line in a C++ program, however.
There are rules that govern where semicolons are required and where they are not. Part of
learning C++ is learning where to place semicolons and other punctuation symbols.

Engi Page 1

A statement is a complete instruction that causes the computer to perform some action.
Here is the statement that appears in line 10 of Program 1-1:

cout << "How many hours did you work? ";

Variables

A variable 1s a named storage location in the computer’s memory for holding a piece of data.
The data stored in variables may change while the program is running (hence the name
“variable”). Notice that in Program 1-1 the words hours, rate, and pay appear in several
places. All three of these are the names of variables. The hours variable is used to store the
number of hours the user worked. The rate variable stores the user’s hourly pay rate. The
pay variable holds the result of hours multiplied by rate, which is the user’s gross pay.

A flotwchart is a diagram that shows the logical flow of a program. It is a useful tool for
planning each operation a program must perform, and the order in which the operations
are to occur. For more information see Appendix O, Introduction to Flowcharting.

Pseudocode is a cross between human language and a programming language. Although
the computer can’t understand pseudocode, programmers often find it helpful to write an
algorithm using it. This is because pseudocode is similar to natural language, yet close
enough to programming language that it can be easily converted later into program source
code. By writing the algorithm in pseudocode first, the programmer can focus on just the
logical steps the program must perform, without having to worry yet about syntax or
about details such as how output will be displayed.

Pseudocode can be written at a high level or at a detailed level. Many programmers use
both forms. High level pseudocode simply lists the steps a program must perform. Here is
high level pseudocode for the pay-calculating program.

Get payroll data
Calculate gross pay
Display gross pay

Program 2-1

// A simple C++ program
finclude <iostream>
using namespace std;

int main()

{

cout << "Programming is great fun!";
return 0;

}

The output of the program is shown below. This is what appears on the screen when the program runs.

Program Output
Programming is great fun!

Engi Page 2

Let’s examine the program line by line. Here’s the first line:
// A simple C++ program

The // marks the beginning of a comment. The compiler ignores everything from the
double-slash to the end of the line. That means you can type anything you want on that

Line 2 looks like this:

#include <iostream>

This line must be included in a C++ program in order to get input from the keyboard or
print output to the screen. Since the cout statement (on line 7) will print output to the
computer screen, we need to include this line. When a line begins with a # it indicates it
is a preprocessor directive. The preprocessor reads your program before it is compiled
and only executes those lines beginning with a # symbol. Think of the preprocessor as a
program that “sets up” your source code for the compiler.

The #include directive causes the preprocessor to include the contents of another file in
the program. The word inside the brackets, iostream, is the name of the file that is to be
included. The iostream file contains code that allows a C++ program to display output on
the screen and read input from the keyboard. Because this program uses cout to display
screen output, the iostream file must be included. Its contents are included in the program
at the point the #include statement appears. The iostrean file is called a header file, so it
should be included at the head, or top, of the program.

Line 3 reads

using namespace std;

every name created by the iostream file is part of that namespace. In order for a pro-
gram to use the entities in iostream, it must have access to the std namespace. More

Screen clipping taken: 4/1/2013 1:06 PM

program entities that must have names. C++ uses namespaces to organize the names of
program entities. The statement using namespace std; declares that the program will
be accessing entities whose names are part of the namespace called std. (Yes, even
namespaces have names.) The program needs access to the std namespace because
every name created by the iostream file is part of that namespace. In order for a pro-

gram to use the entities in iostream, it must have access to the std namespace. More
informatinon nn nameanaces can he fonnd in Annendiv B

Line 5 reads
int main()

This marks the beginning of a function. A function can be thought of as a group of one or
more programming statements that has a name. The name of this function is main, and the
set of parentheses that follows the name indicates that it is a function. The word int
stands for “integer.” It indicates that the function sends an integer value back to the oper-
ating system when it is finished executing.

Engi Page 3

Line 6 contains a single, solitary character:

{

This is called a left-brace, or an opening brace, and it is associated with the beginning of
the function main. All the statements that make up a function are enclosed in a set of
braces. If you look at the third line down from the opening brace you’ll see the closing
brace. Everything between the two braces is the contents of the function main.

WARNING! Make sure you have a closing brace for every opening brace in
your program.

After the opening brace you see the following statement in line 7:
cout << "Programming is great fun!";

To put it simply, this line displays a message on the screen. You will read more about cout
and the << operator later in this chapter. The message “Programming is great fun!” is
printed without the quotation marks. In programming terms, the group of characters
inside the quotation marks is called a string literal, a string constant, or simply a string.

Notice that line 7 ends with a semicolon. Just as a period marks the end of a sentence, a semi-
colon is required to mark the end of a complete statement in C++. But many C++ lines do not
end with semicolons. Some of these include comments, preprocessor directives, and the
beginning of functions. Here are some examples of when to use, and not use, semicolons.

// Semicolon examples // This is a comment
include <iostream> // This is a preprocessor directive
int main() // This begins a function

return 0;

This sends the integer value 0 back to the operating system upon the program’s comple-
tion. The value 0 usually indicates that a program executed successfully.

The last line of the program, line 9, contains the closing brace:

}

Engi Page 4

Table 2-1 Special Characters

Character Name Description

// Double slash Marks the beginning of a comment.

Pound sign Marks the beginning of a preprocessor directive.

< > Opening and closing Encloses a filename when used with the #include
brackets directive.

() Opening and closing Used in naming a function, as in int main().
parentheses

{1} Opening and closing Encloses a group of statements, such as the contents of a
braces function.

o Opening and closing Encloses a string of characters, such as a message that is to
quotation marks be printed on the screen.

; Semicolon Marks the end of a complete programming statement.

22 The cout Object

1 CONCEPT: cout is used to display information on the computer’s screen.

cout << "Programming is great fun!";

cout << "Programming is " << "great fun!";

cout << "Programming is ";
cout << "great fun!";

#include <iostream>
using namespace std;

int main()

{

cout
cout
cout
cout
cout

<<
<<
<<
<<
<<

"The following items were top sellers”;
"during the month of June:";

"Computer games";
"Coffee";
"Aspirin”;

return 0;

Program Output

The following items were top sellersduring the month of June:Computer
gamesCoffeeAspirin

Engi Page 5

long line is that cout does not start a new line unless told to do so. There are two ways to
instruct cout to start a new line. The first is to send cout a stream manipulator called
endl (pronounced “end-line” or “end-L”). Program 2-5 does this.

Program 2-5

// A well-adjusted printing program
#include <iostream>
using namespace std;

int main()

<<
<<
<<
<<
<<

"The following items were top sellers" << endl;
"during the month of June:" << endl;

"Computer games" << endl;

"Coffee" << endl;

"Aspirin" << endl;

return 0;

{
cout
cout
cout
cout
cout
}

Program Output

The following items were top sellers
during the month of June:
Computer games

Coffee
Aspirin

Program 2-6

// Another well-adjusted printing program
#include <iostream>
using namespace std;

int main()

<<
<<
<<
<<

"The following items were top sellers\n";
"during the month of June:\n";

"Computer games\nCoffee";

"\nAspirini\n";

return 0;

{
cout
cout
cout
cout
}

Program Output

The following items were top sellers
during the month of June:

Computer games

Coffee
Aspirin

Engi Page 6

(program continues)

Table 2-2 Common Escape Sequences

Escape

Sequence Name

\n Newline

\t Horizontal tab

\a Alarm

\b Backspace

\r Return

A\ Backslash

\ Single quote

A" Double quote
|

Description

Causes the cursor to go to the next line for subsequent printing.
Causes the cursor to skip over to the next tab stop.

Causes the computer to beep.

Causes the cursor to back up, or move left one position.

Causes the cursor to go to the beginning of the current line, not the
next line.

Causes a backslash to be printed.
Causes a single quotation mark to be printed.

Causes a double quotation mark to be printed.

25 Variables, Constants, and the Assignment

Statement

CONCEPT: Variables represent storage locations in the computer’s memory.
Constants are data items whose values cannot change while the program
is running.

Program 2-7

// This program has a variable.

#include <iostream>

using namespace std;

int main()

cout << "The wvalue of number is " << "number" << endl;
cout << "The value of number is " << number << endl;

cout << "Now the walue of number is " << number << endl;

{
int number;:
number = 5;
number = 7;
return 0;

h

Program Output
The value of number is number
The value of number is 5

Now the value of number is 7

Engi Page 7

number

=5;

This is called an assignment statement and the = sign is called the assignment operator.”

2.8

Solucion:

2.7

Checkpoint
2.6

Qr

Which of the following are legal C++ assignment statements?

O K

b. a; X 0
c. = 7;)(
List all the variables and-eenstants that appear below.

int main()
{
int little;
int big;
little = 2;
big = 2000;
cout << \"The little number is % << little << endl;
cout << \"The big number is "){{ big << endl;
return 0;

When the above program is run, what will display on the screen?

The little number is 2
The big number is 2000

2.9

What will the following program display on the screen?

#include <iostream>
using namespace std;

int main()

{

int number;

number = 712;
cout << "The value is " << "number" << endl;
return 0;

The value is number

Engi Page 8

gy
26 Identifiers

1 CONCEPT: A variable name should indicate what the variable is used for.

An identifier 1s a programmer-defined name that represents some element of a program.
Variable names are examples of identifiers. You may choose your own variable names in
C++, as long as you do not use any of the C++ key words. The key words make up the
“core” of the language and have specific purposes. Table 2-4 shows a complete list of the
C++ key words. Note that they are all lowercase.

Table 2-4 C++ Key Words

and continue goto public try

and eq default if register typedef
asm delete inline reinterpret_cast typeid
auto do int return typename
bitand double long short union
bitor dynamic_cast mutable signed unsigned
bool else namespace sizeof using
break enum new static virtual
case explicit not static_cast void
catch export not_egq struct volatile
char extern operator switch wchar_t
class false or template while
compl float or_eq this Xor
const for private throw Xor_eq
const_cast friend protected true

Legal Identifiers

Regardless of which style you adopt, be consistent and make your variable names as sensi-
ble as possible. Here are some specific rules that must be followed with all C++ identifiers.

* The first character must be one of the letters a through z, A through Z, or an under-
score character (_).

Integer Data Types

e After the first character you may use the letters a through z or A through Z, the digits

0 through 9, or underscores.

e Uppercase and lowercase characters are distinct. This means ItemsOrdered is not
the same as itemsordered.

Engi Page 9

Table 2-5 Some C++ Variable Names

Variable Name Legal or Illegal

dayOfwWeek Legal.

3dGraph Illegal. Variable names cannot begin with a digit.

_employee_num Legal.

Junel997 Legal.

Mixture#3 Illegal. Variable names may only use letters, digits, and underscores.
|

27 Integer Data Types

1 CONCEPT: There are many different types of data. Variables are classified according
to their data type, which determines the kind of information that may be
stored in them. Integer variables can only hold whole numbers.

Table 2-6 Integer Data Types, Sizes, and Ranges

Data Type Size Range
short 2 bytes -32,768 to +32,767
unsigned short 2 bytes 0 to +65,535
int 4 bytes -2,147,483,648 to +2,147,483,647
unsigned int 4 bytes 0 to 4,294,967,295
long 4 bytes -2,147,483,648 to +2,147,483,647
unsigned long 4 bytes 0to4,294,967,295
"

28 The char Data Type

1 CONCEPT: A variable of the char data type holds only a single character.

Engi Page 10

int main()

{
char letter;

er 2 Introduction to C++

rogram 2-12 (continued)

letter = 'A';
cout << letter << endl;

=g
29 | The C++ string Class

1 CONCEPT: Standard C++ provides a special data type for storing and working with
strings.

Using the string Class
The first step in using the string class is to #include the string header file. This is
accomplished with the following preprocessor directive:

#include <string>

The next step is to define a string type variable, called a string object. Defining a string
object is similar to defining a variable of a primitive type. For example, the following state-

ment defines a string object named movieTitle.

string movieTitle;

movieTitle = "Wheels of Fury";

|
210 Floating-Point Data Types

1 CONCEPT: Floating-point data types are used to define variables that can hold real
numbers.

Engi Page 11

Table 2-8 Floating-Point Data Types on PCs
Significant
Data Type Key Word Size Range Digits
Single precision float 4 bytes Numbers between +3.4E-38 and 7
+3.4E38
Double precision double 8 bytes Numbers between +1.7E-308 and 16
+1.7E308
Long double precision long double 8 bytes® Numbers between =1.7E-308 and 16

+=1.7E308

Program Z-15

// This program uses two flcocating-point data types,

#include <iostream>
using namespace std;

int main()

float and douk

{
float distance = 1.496ES8; // in kilometers
double mass = 1.989E30; // in kilograms
cout << "The Sun is " << distance << " kilometers away.‘\n";
cout << "The Sunl\'s mass is " << mass << " kilograms.\n";
return 0;

}

Program Output

The Sun is 1.496e+008 kilometers away.
The Sun's mass is 1.989e+030 kilograms.

float and double.

1 £/ This program uses two floating-point data types,

2 #include <iostrean:>

3 using namespace ztd;

4

5 Hint main{) {

6 float distance = s/ in kilometers

7 double mass = : // 1in kilograms

a

a cout << "The sun is " << distance << " kilometers away.in';
10 cout << "The Sunk’lz mass is " << mass << " kilograms.\wn";
11 return [I;

1z 1}

C:\MinGW\bin>g++ examplefloat.cpp -0 examplefloat.exe

C:\MinGW\bin>examplefloat . exe
The Sun is 1.496e+808 kilometers away.
The Sun’'s mass 1s 1.989e+030 kilograms.

C:\MinGW\bin>

Engi Page 12

g
211 The bool Data Type

1 CONCEPT: Boolean variables are set to either true or false.

Program 2-16

// This program uses Boolean variables.
#include <iostream>
using namespace std;

int main()

{
bool boolValue;

boolValue = true;
cout << boolValue << endl;

boolvalue = false;
cout << boolValue << endl;
return 0;

Program Output
1
0

Constants: se definen tal y como aparece abajo (el typedef puede ser int,
bool, float, double, string, etc. Y se debe inicializar en el mismo statement.
Luego no se puede modificar - compiler error-)

const double INTEREST RATE = 0.129;

Engi Page 13

