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Problem 1 (25 points): Lets (X,Y) have the following joint distribution p(x,y) 
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Problem 2 (10 points): Let {  be arbitrary positive numbers, and be 

 be positive numbers whose sum is the unit. Prove that: 
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With equality if and only if all  are equal. ix
 
Problem 3 (15 points): Coin flips. A fair coin is flipped until the first head occurs. Let X 
the number of flips required. Find the entropy H(X). The following expression may be 
useful. 
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Solution Problem 1 (25 points): Lets (X,Y) have the following joint distribution p(x,y) 
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Solution 
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Therefore the Entropies for this exercise are: 
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b) ,  )/( YXH )/( XYH
Conditional Entropy; for this exercise can be written as: 

∑∑
= =

−=
1

0

1

0
2 ))/((log),()/(

x y
yxpyxpYXH ∑∑

= =

−=
1

0

1

0
2 )

)(
),((log),(

x y yp
yxpyxp

)
)1(

)1,1((log)1,1()
)1(

)1,0((log)1,0(

)
)0(

)0,1((log)0,1()
)0(

)0,0((log)0,0(

22

22

=
==

==−
=

==
==−

=
==

==−
=

==
==−=

yp
yxpyxp

yp
yxpyxp

yp
yxpyxp

yp
yxpyxp

 

0.7956)
8/5
8/1(log

8
1)

8/5
2/1(log

2
1)

8/3
8/1(log

8
1)

8/3
4/1(log

4
1

2222 =−−−−=  

Similarly 

∑∑
= =

−=
0

1

0
2 ))/((log),(1)/(

x y
xypyxpYYH ∑∑

= =

−=
1

0

1

0
2 )

)(
),((log),(

x y xp
yxpyxp  

∑∑
= =

−=
1

0

1

0
2 )

)(
),((log),(

x y yp
yxpyxp

)
)1(

)1,1((log)1,1()
)0(

)1,0((log)1,0(

)
)1(

)0,1((log)0,1()
)0(

)0,0((log)0,0(

22

22

=
==

==−
=

==
==−

=
==

==−
=

==
==−=

xp
yxpyxp

xp
yxpyxp

xp
yxpyxp

xp
yxpyxp

 

0.9387)
4/1
8/1(log

8
1)

4/3
2/1(log

2
1)

4/1
8/1(log

8
1)

4/3
4/1(log

4
1

2222 =−−−−=  

 
c)  ),( YXH
Joint Entropy is defined as: 
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For this part, let’s just plug in the values. 
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Let’s think the meaning of this equation. If we consider the Entropies as Venn diagrams 
we have that )/()( XYHYH −  is just the part that intersects both diagrams. This is the 
mutual information. 



   
 
e)  ),( YXI
Mutual Information is defined as 
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This result is in agreement with part d) because it is the same thing. 
 
I have written a subroutine in Matlab that calculates all these results, regardless of the 
dimension and values of X and Y. Please find it attached at the APENDIX of this 
homework. 
 

I(X,Y) H(Y/X) 

H(Y)H(X)



Solution Problem 2: Let {  be arbitrary positive numbers, and be { } 
be positive numbers whose sum is the unit. Prove that: 
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with equality if and only if all  are equal. ix
 
Solution 
If all  are equal we can arrange the equation to be ix
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Jensen’s inequality states that: 
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If we select a convex function like )(log)( 2 xxf −=  using Jensen’s let me write: 
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Multiplying by -1 both sides we change the direction of the inequality as: 
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By the properties of logarithms we know that 
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Taking out the log from the left and the far right side we have the solution 
na

n
aa

n

i
ii xxxxa ....21

21
1

≥∑
=

 



Solution Problem 3 (15 points): Coin flips. A fair coin is flipped until the first head 
occurs. Let X the number of flips required. Find the entropy H(X). The following 
expression may be useful. 
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Solution  
Let me write X as the RV to define the number of flips required. { },....,, 321 xxxXx∈ . In 

this case 
2
1)( 1 =xp  is the probability to get a head at the first time. 
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the head at the third flip. We can expand this reasoning until the i times 
 
The Entropy is defined as:  
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APPENDIX 
Problem 1 Appendix A 
I have written a subroutine in Matlab that calculates all these results, regardless of the 
dimension and values of X and Y 
 
This is the code: 
%mprob2ass1 
clear 
clc 
%This is the Probability matrix for X and for Y events. 
pxy=[1/4, 1/8;  
     1/2, 1/8]; 
%Size of alphabet 
[N,N] = size(pxy); 
 
%Marginal Probabilities. Be careful here, rows are y and columns are x 
px(N,1)=0; 
for ry=1:N %index of rows or y 
    pi = pxy(ry,:)'; 
    px=px+pi; 
end 
%pxx = sum(pxy,1) 
 
py(N,1)=0; 
for cx=1:N %index of columns or x 
    pi = pxy(:,cx); 
    py=py+pi; 
end 
%pyy = sum(pxy,2) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculation of Entropy 
HX = 0; 
HY = 0; 
for i=1:N %index for the marginal probabilities 
    %to avoid dividing by zero 
    if px(i)~=0 
        HXi = px(i)*log2(1/px(i)); 
    else 
        HXi = 0; 
    end 
     
    if py(i)~=0 
        HYi = py(i)*log2(1/py(i)); 
    else 
        HYi = 0; 
    end 
    
    HX = HX + HXi; 
    HY = HY + HYi; 
end 
disp('Entropy from definition') 
disp(['H(X) =  ',num2str(HX)]); 
disp(['H(Y) =  ',num2str(HY)]); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculation of Joint Entropy 
HXY = 0; 
for ry=1:N %index for row/yvalues 
    for cx=1:N %index for colum/xvalues 
        %to avoid dividing by zero 
        if pxy(ry,cx)~=0 
            HXYi = pxy(ry,cx)*log2(pxy(ry,cx)); 
        else 
            HXYi = 0; 
        end 
 



        HXY = HXY - HXYi; 
    end 
end 
disp(['H(X,Y) =  ',num2str(HXY)]); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculation of Conditional Entropy 
%To do this, we have to find the Conditional probabilities of all elements. 
%Lets calculate the matrix of conditional probabilities 
for ry=1:N 
    for cx=1:N 
        pxcy(ry,cx) = pxy(ry,cx)/py(ry); 
        pycx(ry,cx) = pxy(ry,cx)/px(cx); %I had to be very careful not  
        %confuse rows with values of x (rows are values of y) 
    end 
end 
 
%Now we calculate the Conditional Entropy H(X/Y) by its definition. 
%We calculate it from the two formulas, and then verify that they 
%agree with each other. 
HXcY1 = 0; 
HXcY2 = 0; 
for ry=1:N 
    for cx=1:N 
        %to avoid dividing by zero 
        if pxcy(ry,cx)~=0 
            HXcYi1 = pxy(ry,cx)*log2(pxcy(ry,cx)); 
            HXcYi2 = pxy(ry,cx)*log2(pxy(ry,cx)/py(ry)); 
        else 
            HXcYi1 = 0; 
            HXcYi2 = 0 
        end 
        HXcY1 = HXcY1 - HXcYi1; 
        HXcY2 = HXcY2 - HXcYi2; 
    end 
end 
 
if HXcY1 ~= HXcY2 
    disp('Error HXcY1 ~= HXcY2'); 
    disp(['H1(X/Y) =  ',num2str(HXcY1)]); 
    disp(['H2(X/Y) =  ',num2str(HXcY2)]); 
    return 
else 
    HXcY = HXcY2; 
end 
disp(['H(X/Y) =  ',num2str(HXcY)]); 
 
%Now we will calculate the Conditional Entropy from the formula 
disp(['H(X/Y) =  H(X,Y) - H(Y) = ',num2str(HXY-HY)]); 
 
%Now we calculate the Conditional Entropy H(Y/X) by its definition. 
%We calculate it from the two formulas, and then verify that they 
%agree with each other. 
HYcX1 = 0; 
HYcX2 = 0; 
for ry=1:N 
    for cx=1:N 
        %to avoid dividing by zero 
        if pycx(ry,cx)~=0 
            HYcXi1 = pxy(ry,cx)*log2(pycx(ry,cx)); 
            HYcXi2 = pxy(ry,cx)*log2(pxy(ry,cx)/px(cx)); 
        else 
            HYcXi1 = 0; 
            HYcXi2 = 0; 
        end 
        HYcX1 = HYcX1 - HYcXi1; 
        HYcX2 = HYcX2 - HYcXi2; 
    end 
end 



 
if HYcX1 ~= HYcX2 
    disp('Error HYcX1 ~= HYcX2'); 
disp(['H1(Y/X) =  ',num2str(HYcX1)]); 
disp(['H2(Y/X) =  ',num2str(HYcX2)]); 
else 
    HYcX = HYcX2; 
end 
disp(['H(Y/X) =  ',num2str(HYcX)]); 
%Now we will calculate the conditional entropy from the formula 
disp(['H(Y/X) =  H(X,Y) - H(X) = ',num2str(HXY-HX)]); 
 
disp(' '); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculation of Information 
IXY = 0; 
 
%From its definition 
for ry=1:N 
    for cx=1:N 
        %to avoid dividing by zero 
        if pxy(ry,cx)~=0 && px(cx)*py(ry)~=0 
            IXYi = pxy(ry,cx)*log2(pxy(ry,cx)/(px(cx)*py(ry)));%I had to  
            %be very careful not  
            %confuse rows with values of x (rows are values of y) 
        else 
            IXYi = 0; 
        end 
        IXY = IXY + IXYi; 
    end 
end 
disp(['I(X,Y) =  ',num2str(IXY)]); 
 
%Now we will calculate the Information from the formula 
disp(['I(X,Y) =  H(X) - H(X/Y) = ',num2str(HX-HXcY)]); 
disp(['I(X,Y) =  H(Y) - H(Y/X) = ',num2str(HY-HYcX)]); 
 
disp(['H(X) =  I(X,Y) + H(X/Y)= ',num2str(IXY+HXcY)]); 
disp(['H(Y) =  I(X,Y) + H(Y/X)= ',num2str(IXY+HYcX)]); 
 
disp(['H(X,Y) =  H(X) + H(Y) - I(X,Y) = ',num2str(HX+HY-IXY)]); 

 
 

The screenshot output is 

 

 
Entropy from definition 
H(X) =  0.81128 
H(Y) =  0.95443 
H(X,Y) =  1.75 
H(X/Y) =  0.79557 
H(X/Y) =  H(X,Y) - H(Y) = 0.79557 
H(Y/X) =  0.93872 
H(Y/X) =  H(X,Y) - H(X) = 0.93872 
  
I(X,Y) =  0.015712 
I(X,Y) =  H(X) - H(X/Y) = 0.015712 
I(X,Y) =  H(Y) - H(Y/X) = 0.015712 
H(X) =  I(X,Y) + H(X/Y)= 0.81128 
H(Y) =  I(X,Y) + H(Y/X)= 0.95443 
H(X,Y) =  H(X) + H(Y) - I(X,Y) = 1.75


