ECE401/8001 VISUAL SIGNAL PROCESSING AND COMMUNICATIONS

Winter 2005
Prof.: Dr. Zhihai (Henry) He

Homework 01
01/27/2005

Luis M Vicente
Student number: 945-995
E-mail: lmvy8c@mizzou.edu

Problem 1 (25 points): Lets (X,Y) have the following joint distribution $p(x, y)$

| $\mathrm{y} \backslash \mathrm{x}$ | 0 | 1 |
| :--- | :--- | :--- |
| 0 | $1 / 4$ | $1 / 8$ |
| 1 | $1 / 2$ | $1 / 8$ |

Find
a) $H(X), H(Y)$
b) $H(X / Y), H(Y / X)$
c) $H(X, Y)$
d) $H(Y)-H(Y / X)$
e) $I(X, Y)$

Problem 2 (10 points): Let $\left\{x_{1}, x_{2} \ldots x_{n}\right\}$ be arbitrary positive numbers, and be $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be positive numbers whose sum is the unit. Prove that:
$x_{1}^{a_{1}} X_{2}^{a_{2}} \ldots . . x_{n}^{a_{n}} \leq \sum_{i=1}^{n} a_{i} x_{i}$
With equality if and only if all $x_{i}$ are equal.
Problem 3 ( 15 points): Coin flips. A fair coin is flipped until the first head occurs. Let X the number of flips required. Find the entropy $\mathrm{H}(\mathrm{X})$. The following expression may be useful.

$$
\sum_{n=1}^{\infty} r^{n}=\frac{r}{1-r}, \sum_{n=1}^{\infty} n r^{n}=\frac{r}{(1-r)^{2}}
$$

Solution Problem 1 (25 points): Lets ( $\mathrm{X}, \mathrm{Y}$ ) have the following joint distribution $\mathrm{p}(\mathrm{x}, \mathrm{y})$

|  |  | x |  |
| :--- | :--- | :--- | :--- |
|  | $\mathrm{y} \backslash \mathrm{x}$ | 0 | 1 |
| y | 0 | $1 / 4$ | $1 / 8$ |
|  | 1 | $1 / 2$ | $1 / 8$ |

Find
a) $H(X), H(Y)$
b) $H(X / Y), H(Y / X)$
c) $H(X, Y)$
d) $H(Y)-H(Y / X)$
e) $I(X, Y)$

## Solution

a) $H(X), H(Y)$

Entropy is defined as
$H(X)=\sum_{x \in X} p(x) \log _{2}\left(\frac{1}{p(x)}\right)$
We can find the marginal distribution of X as:

$$
\begin{aligned}
& p(x)=p(x, y=0)+p(x, y=1) \\
& p(x=0)=p(0,0)+p(0,1)=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}=0.75 \\
& p(x=1)=p(1,0)+p(1,1)=\frac{1}{8}+\frac{1}{8}=\frac{1}{4}=0.25 \\
& \qquad \mathrm{p}(\mathrm{x}) \\
& \hline 3 / 4 \\
& p
\end{aligned}
$$

Also

$$
\begin{aligned}
& p(y)=p(x=0, y)+p(x=1, y) \\
& p(y=0)=p(0,0)+p(1,0)=\frac{1}{4}+\frac{1}{8}=\frac{3}{8}=0.3750 \\
& p(y=1)=p(0,1)+p(1,1)=\frac{1}{2}+\frac{1}{8}=\frac{5}{8}=0.6250 \\
& \qquad \begin{array}{|c|c|c|}
\hline \mathrm{p}(\mathrm{y}) & 3 / 8 & 5 / 8 \\
\hline
\end{array}
\end{aligned}
$$

Therefore the Entropies for this exercise are:
$H(X)=\sum_{x=0}^{1} p(x) \log _{2}\left(\frac{1}{p(x)}\right)=p(x=0) \log _{2}\left(\frac{1}{p(x=0)}\right)+p(x=1) \log _{2}\left(\frac{1}{p(x=1)}\right)=$
$=\frac{3}{4} \log _{2}\left(\frac{4}{3}\right)+\frac{1}{4} \log _{2}(4)=0.81128$
$H(Y)=\sum_{y=0}^{1} p(y) \log _{2}\left(\frac{1}{p(y)}\right)=\frac{3}{8} \log _{2}\left(\frac{8}{3}\right)+\frac{5}{8} \log _{2}\left(\frac{8}{5}\right)=0.95443$

## b) $H(X / Y), H(Y / X)$

Conditional Entropy; for this exercise can be written as:
$H(X / Y)=-\sum_{x=0}^{1} \sum_{y=0}^{1} p(x, y) \log _{2}(p(x / y))=-\sum_{x=0}^{1} \sum_{y=0}^{1} p(x, y) \log _{2}\left(\frac{p(x, y)}{p(y)}\right)$
$=-p(x=0, y=0) \log _{2}\left(\frac{p(x=0, y=0)}{p(y=0)}\right)-p(x=1, y=0) \log _{2}\left(\frac{p(x=1, y=0)}{p(y=0)}\right)$
$-p(x=0, y=1) \log _{2}\left(\frac{p(x=0, y=1)}{p(y=1)}\right)-p(x=1, y=1) \log _{2}\left(\frac{p(x=1, y=1)}{p(y=1)}\right)$
$=-\frac{1}{4} \log _{2}\left(\frac{1 / 4}{3 / 8}\right)-\frac{1}{8} \log _{2}\left(\frac{1 / 8}{3 / 8}\right)-\frac{1}{2} \log _{2}\left(\frac{1 / 2}{5 / 8}\right)-\frac{1}{8} \log _{2}\left(\frac{1 / 8}{5 / 8}\right)=0.7956$
Similarly

$$
\begin{aligned}
& H(Y / Y)=-1 \sum_{x=0} \sum_{y=0}^{1} p(x, y) \log _{2}(p(y / x))=-\sum_{x=0}^{1} \sum_{y=0}^{1} p(x, y) \log _{2}\left(\frac{p(x, y)}{p(x)}\right) \\
& =-\sum_{x=0}^{1} \sum_{y=0}^{1} p(x, y) \log _{2}\left(\frac{p(x, y)}{p(y)}\right) \\
& =-p(x=0, y=0) \log _{2}\left(\frac{p(x=0, y=0)}{p(x=0)}\right)-p(x=1, y=0) \log _{2}\left(\frac{p(x=1, y=0)}{p(x=1)}\right) \\
& -p(x=0, y=1) \log _{2}\left(\frac{p(x=0, y=1)}{p(x=0)}\right)-p(x=1, y=1) \log _{2}\left(\frac{p(x=1, y=1)}{p(x=1)}\right) \\
& =-\frac{1}{4} \log _{2}\left(\frac{1 / 4}{3 / 4}\right)-\frac{1}{8} \log _{2}\left(\frac{1 / 8}{1 / 4}\right)-\frac{1}{2} \log _{2}\left(\frac{1 / 2}{3 / 4}\right)-\frac{1}{8} \log _{2}\left(\frac{1 / 8}{1 / 4}\right)=0.9387
\end{aligned}
$$

c) $H(X, Y)$

Joint Entropy is defined as:
$H(X, Y)=\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}\left(\frac{1}{p(x, y)}\right)$
For this particular problem:
$H(X, Y)=\sum_{x=0}^{1} \sum_{y=0}^{1} p(x, y) \log _{2}\left(\frac{1}{p(x, y)}\right)=$
$=-p(x=0, y=0) \log _{2}(p(x=0, y=0))-p(x=1, y=0) \log _{2}(p(x=1, y=0))$
$-p(x=0, y=1) \log _{2}(p(x=0, y=1))-p(x=1, y=1) \log _{2}(p(x=1, y=1))$
$=-\frac{1}{4} \log _{2}(1 / 4)-\frac{1}{8} \log _{2}(1 / 8)-\frac{1}{2} \log _{2}(1 / 2)-\frac{1}{8} \log _{2}(1 / 8)=1.75$
d) $H(Y)-H(Y / X)$

For this part, let's just plug in the values.
$H(Y)-H(Y / X)=0.95443-0.93872=0.0157$
Let's think the meaning of this equation. If we consider the Entropies as Venn diagrams we have that $H(Y)-H(Y / X)$ is just the part that intersects both diagrams. This is the mutual information.

e) $I(X, Y)$

Mutual Information is defined as
$I(X, Y)=\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}\left(\frac{p(x, y)}{p(x) p(y)}\right)$
For this particular problem:

$$
\begin{aligned}
& I(X, Y)=\sum_{x=0}^{1} \sum_{y=0}^{1} p(x, y) \log _{2}\left(\frac{p(x, y)}{p(x) p(y)}\right)= \\
& =p(x=0, y=0) \log _{2}\left(\frac{p(x=0, y=0)}{p(x=0) p(y=0)}\right)+p(x=1, y=0) \log _{2}\left(\frac{p(x=1, y=0)}{p(x=1) p(y=0)}\right) \\
& +p(x=0, y=1) \log _{2}\left(\frac{p(x=0, y=1)}{p(x=0) p(y=1)}\right)+p(x=1, y=1) \log _{2}\left(\frac{p(x=1, y=1)}{p(x=1) p(y=1)}\right) \\
& =\frac{1}{4} \log _{2}\left(\frac{1 / 4}{3 / 4 * 3 / 8}\right)+\frac{1}{8} \log _{2}\left(\frac{1 / 8}{1 / 4 * 3 / 8}\right)+\frac{1}{2} \log _{2}\left(\frac{1 / 2}{3 / 4 * 5 / 8}\right)+\frac{1}{8} \log _{2}\left(\frac{1 / 8}{1 / 4 * 5 / 8}\right)=0.0157
\end{aligned}
$$

This result is in agreement with part d) because it is the same thing.
I have written a subroutine in Matlab that calculates all these results, regardless of the dimension and values of X and Y . Please find it attached at the APENDIX of this homework.

Solution Problem 2: Let $\left\{x_{1}, x_{2} \ldots x_{n}\right\}$ be arbitrary positive numbers, and be $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be positive numbers whose sum is the unit. Prove that:
$x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots . . x_{n}^{a_{n}} \leq \sum_{i=1}^{n} a_{i} x_{i}$
with equality if and only if all $x_{i}$ are equal.

## Solution

If all $x_{i}$ are equal we can arrange the equation to be
$x_{1}^{a_{1}} x_{1}^{a_{2}} \ldots x_{1}^{a_{n}} \stackrel{?}{\leq} \sum_{i=1}^{n} a_{i} x_{1}$
$x_{1}^{a_{1}+a_{2}+\ldots+a_{n}} \stackrel{?}{\leq} x_{1} \sum_{i=1}^{n} a_{i}$
$x_{1}^{\sum_{1}^{n} a_{i}} \stackrel{?}{\leq} x_{1} \sum_{i=1}^{n} a_{i}$
Because $\sum_{i=1}^{n} a_{i}=1$ we have
$x_{1}^{1}=x_{1} * 1$

If $x_{i}$ are not equal
$x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots . x_{n}^{a_{n}} \stackrel{?}{\leq} \sum_{i=1}^{n} a_{i} x_{i}$ and we have that $\sum_{i=1}^{n} a_{i}=1$
Jensen's inequality states that:
$f\left(\sum_{i=1}^{N} p_{i} x_{i}\right) \leq \sum_{i=1}^{N} p_{i} f\left(x_{i}\right)$ and $\sum_{i=1}^{N} p_{i}=1$ being $f(x)$ a convex function.
Let me rewrite the inequality as

$$
f\left(\sum_{i=1}^{n} a_{i} x_{i}\right) \leq \sum_{i=1}^{n} a_{i} f\left(x_{i}\right) \text { and } \sum_{i=1}^{n} a_{i}=1
$$

If we select a convex function like $f(x)=-\log _{2}(x)$ using Jensen's let me write:

$$
-\log _{2}\left(\sum_{i=1}^{n} a_{i} x_{i}\right) \leq \sum_{i=1}^{n} a_{i}\left(-\log _{2}\left(x_{i}\right)\right) \text { and } \sum_{i=1}^{n} a_{i}=1
$$

furthermore:

$$
\begin{aligned}
& -\log _{2}\left(\sum_{i=1}^{n} a_{i} x_{i}\right) \leq \sum_{i=1}^{n}\left(-\log _{2}\left(x_{i}^{a_{i}}\right)\right) \\
& -\log _{2}\left(\sum_{i=1}^{n} a_{i} x_{i}\right) \leq-\sum_{i=1}^{n} \log _{2} x_{i}^{a_{i}}
\end{aligned}
$$

Multiplying by -1 both sides we change the direction of the inequality as:

$$
\log _{2}\left(\sum_{i=1}^{n} a_{i} x_{i}\right) \geq \sum_{i=1}^{n} \log _{2} x_{i}^{a_{i}}
$$

By the properties of logarithms we know that $\log _{2} a+\log _{2} b=\log _{2}(a b)$
Therefore the right side can be expanded to the far right as:
$\log _{2}\left(\sum_{i=1}^{n} a_{i} x_{i}\right) \geq \sum_{i=1}^{n} \log _{2} x_{i}^{a_{i}}=\log _{2}\left(x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots . x_{n}^{a_{n}}\right)$
Taking out the log from the left and the far right side we have the solution $\sum_{i=1}^{n} a_{i} x_{i} \geq x_{1}^{a_{1}} X_{2}^{a_{2}} \ldots x_{n}^{a_{n}}$

Solution Problem 3 (15 points): Coin flips. A fair coin is flipped until the first head occurs. Let X the number of flips required. Find the entropy $\mathrm{H}(\mathrm{X})$. The following expression may be useful.

$$
\sum_{n=1}^{\infty} r^{n}=\frac{r}{1-r}, \sum_{n=1}^{\infty} n r^{n}=\frac{r}{(1-r)^{2}}
$$

## Solution

Let me write X as the RV to define the number of flips required. $x \in X\left\{x_{1}, x_{2}, x_{3}, \ldots.\right\}$. In this case $p\left(x_{1}\right)=\frac{1}{2}$ is the probability to get a head at the first time.
$p\left(x_{2}\right)=\frac{1}{2} * \frac{1}{2}=\frac{1}{2^{2}}$ is the probability of getting tail at the first flip and getting head at the second flip.
$p\left(x_{3}\right)=\frac{1}{2} * \frac{1}{2} * \frac{1}{2}=\frac{1}{2^{3}}$ is the probability getting tails the first and the second flips, but get the head at the third flip. We can expand this reasoning until the $i$ times

The Entropy is defined as:
$H(X)=\sum_{x \in X} p(x) \log _{2}\left(\frac{1}{p(x)}\right)$
In this case we have
$H(X)=\sum_{i=1}^{\infty} p\left(x_{i}\right) \log _{2}\left(\frac{1}{p\left(x_{i}\right)}\right)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \log _{2}\left(2^{i}\right)$
$=\sum_{i=1}^{\infty} \frac{i}{2^{i}} \log _{2}(2)=\sum_{i=1}^{\infty} \frac{i}{2^{i}}=\sum_{i=1}^{\infty} i\left(\frac{1}{2}\right)^{i}$
I was given a useful expression $\sum_{n=1}^{\infty} n r^{n}=\frac{r}{(1-r)^{2}}$
Therefore:
$H(X)=\sum_{i=1}^{\infty} i\left(\frac{1}{2}\right)^{i}=\frac{\frac{1}{2}}{\left(1-\frac{1}{2}\right)^{2}}=\frac{1 / 2}{1 / 4}=2$

## APPENDIX

## Problem 1 Appendix A

I have written a subroutine in Matlab that calculates all these results, regardless of the dimension and values of X and Y

This is the code:

```
%mprob2ass1
clear
clc
%This is the Probability matrix for }\textrm{X}\mathrm{ and for Y events.
pxy=[1/4, 1/8;
    1/2, 1/8];
%Size of alphabet
[N,N] = size(pxy);
%Marginal Probabilities. Be careful here, rows are y and columns are x
px(N,1)=0;
for ry=1:N %index of rows or y
    pi = pxy(ry,:)';
    px=px+pi;
end
%pxx = sum(pxy,1)
py(N,1)=0;
for cx=1:N %index of columns or x
    pi = pxy(:,cx);
    py=py+pi;
end
%pyy = sum(pxy,2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculation of Entropy
HX = 0;
HY = 0;
for i=1:N %index for the marginal probabilities
    %to avoid dividing by zero
    if px(i)~=0
        HXi = px(i)*log2(1/px(i));
    else
        HXi = 0;
    end
    if py(i)~=0
        HYi= py(i)*log2(1/py(i));
    else
        HYi = 0;
    end
    HX = HX + HXi;
    HY = HY + HYi;
end
disp('Entropy from definition')
disp(['H(X) = ',num2str(HX)]);
disp(['H(Y) = ',num2str(HY)]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculation of Joint Entropy
HXY = 0;
for ry=1:N %index for row/yvalues
    for cx=1:N %index for colum/xvalues
        %to avoid dividing by zero
        if pxy(ry,cx)~=0
            HXYi = pxy(ry,cx)*log2(pxy(ry,cx));
        else
            HXYi = 0;
        end
```

```
        HXY = HXY - HXYi;
        end
end
disp(['H(X,Y) = ',num2str(HXY)]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculation of Conditional Entropy
%To do this, we have to find the Conditional probabilities of all elements.
%Lets calculate the matrix of conditional probabilities
for ry=1:N
    for cx=1:N
        pxcy(ry,cx) = pxy(ry,cx)/py(ry);
        pycx(ry,cx) = pxy(ry,cx)/px(cx); %l had to be very careful not
        %confuse rows with values of x (rows are values of y)
    end
end
%Now we calculate the Conditional Entropy H(X/Y) by its definition.
%We calculate it from the two formulas, and then verify that they
%agree with each other.
HXcY1 = 0;
HXcY2 = 0;
for ry=1:N
    for cx=1:N
        %to avoid dividing by zero
        if pxcy(ry,cx)~=0
                HXcYi1 = pxy(ry,cx)*log2(pxcy(ry,cx));
                HXcYi2 = pxy(ry,cx)*log2(pxy(ry,cx)/py(ry));
            else
                HXcYi1 = 0;
                HXcYi2 = 0
            end
            HXcY1 = HXcY1 - HXcYi1;
            HXcY2 = HXcY2 - HXcYi2;
        end
end
if HXcY1 ~= HXcY2
    disp('Error HXcY1 ~= HXcY2');
    disp(['H1(X/Y) = ',num2str(HXcY1)]);
    disp(['H2(X/Y) = ',num2str(HXcY2)]);
    return
else
    HXcY = HXcY2;
end
disp(['H(X/Y) = ',num2str(HXcY)]);
%Now we will calculate the Conditional Entropy from the formula
disp(['H(X/Y) = H(X,Y) - H(Y) = ',num2str(HXY-HY)]);
%Now we calculate the Conditional Entropy H(Y/X) by its definition.
%We calculate it from the two formulas, and then verify that they
%agree with each other.
HYcX1 = 0;
HYcX2 = 0;
for ry=1:N
    for cx=1:N
        %to avoid dividing by zero
        if pycx(ry,cx)~=0
            HYcXi1 = pxy(ry,cx)*log2(pycx(ry,cx));
            HYcXi2 = pxy(ry,cx)*log2(pxy(ry,cx)/px(cx));
        else
            HYcXi1 = 0;
            HYCXi2 = 0;
        end
        HYcX1 = HYcX1 - HYcXi1;
        HYcX2 = HYcX2 - HYcXi2;
    end
end
```

```
if HYcX1 ~= HYcX2
    disp('Error HYcX1 ~= HYcX2');
disp(['H1(Y/X) = ',num2str(HYcX1)]);
disp(['H2(Y/X) = ',num2str(HYcX2)]);
else
    HYcX = HYcX2;
end
disp(['H(Y/X) = ',num2str(HYcX)]];
%Now we will calculate the conditional entropy from the formula
disp(['H(Y/X) = H(X,Y) - H(X) = ',num2str(HXY-HX)]);
disp(' ');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculation of Information
IXY = 0;
%From its definition
for ry=1:N
    for cx=1:N
        %to avoid dividing by zero
        if pxy(ry,cx)~=0 && px(cx)*py(ry)~=0
            IXYi = pxy(ry,cx)*log2(pxy(ry,cx)/(px(cx)*py(ry)));%l had to
            %be very careful not
            %confuse rows with values of x (rows are values of y)
        else
            IXYi = 0;
        end
        IXY = IXY + IXY;;
    end
end
disp(['1(X,Y) = ',num2str(IXY)]);
%Now we will calculate the Information from the formula
disp([I(X,Y) = H(X)-H(X/Y) = ',num2str(HX-HXcY)]);
disp(['I(X,Y) = H(Y) -H(Y/X) = ',num2str(HY-HYcX)]);
disp(['H(X) = I(X,Y) + H(X/Y)= ',num2str(IXY+HXcY)]);
disp(['H(Y) = I(X,Y) + H(Y/X)= ',num2str(IXY+HYcX)]);
disp(['H(X,Y) = H(X) + H(Y)-I(X,Y) = ',num2str(HX+HY-IXY)]);
```


## The screenshot output is

```
Entropy from definition
H(X)=0.81128
H(Y)=0.95443
H(X,Y) = 1.75
H(X/Y)=0.79557
H(X/Y) = H(X,Y) - H(Y) = 0.79557
H(Y/X) = 0.93872
H(Y/X)=H(X,Y)-H(X)=0.93872
I(X,Y) = 0.015712
I(X,Y) = H(X) -H(X/Y) = 0.015712
I(X,Y)=H(Y)-H(Y/X)=0.015712
H(X) = I(X,Y) + H(X/Y)=0.81128
H(Y) = I(X,Y) + H(Y/X)=0.95443
H(X,Y)=H(X)+H(Y)-I(X,Y) = 1.75
```

