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VISUAL SP AND COMMUNICATIONS 
 
CHAPTER: QUANTIZATION 
 
Quantization maps any continuous input x into a set of discrete values x̂ . x̂  is a discrete 
variable with values ,...}ˆ,....,ˆ,ˆ{ˆ 21 kxxxx   
 
Let’s define some parameters: 

1. Reproduction or reconstruction values x̂  
2. Quantization interval   
3. Decision level kt   

 
The Quantization interval is  1,  kk tt  for a reproduction level kx̂  
 
Quantization can be seen as a function xxQ ˆ:   or )(ˆ xQx   
 
We need a metric of the error introduced by the quantization process. We will call it 
“overall distortion” and it includes all points. 
 
The Mean Square Error is defined as  2)(xQxMSE   
 
The Average Distortion is:  




 dxxpxQxD )()( 2 ; where p(x) is the probability 

density function of the input throughout the entire input interval (all possible values). 
 
That expression can be written as: 
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If we bound our problem for k=[1,N] we have: 
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Minimum Average Distortion Function 
 
We need to find when D becomes minimum. This is a minimization problem. Let’s set 
some rules: 
Rule 1: Suppose  kx̂  values are fixed. Now we are going to find the values of  kt  that 
make the distortion minimum. 
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To find the minimum we equate this to zero: 
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1   kkkkkk tpxttpxt  We see that it is independent of p(x) 
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Therefore the values of  kt  that make the distortion minimum are the central values. This 
is called the Middle Point Conditions. 
 
Rule 2: Suppose  kt  values are fixed. Now we are going to find the values of  kx̂  that 
make the distortion minimum. 
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 we only have one terms with xk in it 
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To find the minimum we equate this to zero: 
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Therefore the values of  kx̂  that make the distortion minimum are the centroid values. 
This is called the Centroid Conditions. 
 
Minimum Rate Function for a General Quantizer. 
 
The objective is to find a function )(RfD   function of the rate R and we will call this 
function “Distortion Rate”. If we define distortion as the MSE we have: 
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First, we will obtain the minimum rate:  
 
And the rate is bounded by the Entropy after quantization. Therefore: 
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Second assumption: N is large; therefore the summation changes to an integral 
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In the case of Uniform Quantizer k  
 

 2log)()( xhXHuq  where h(x) is the entropy of x the input signal. 
 
Therefore the minimum rate for a Uniform Quantizer is 
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 2min, log)(xhR uq  Minimum Rate for Uniform Quantizer with respect the input 
entropy and the step size. 
 
We need now an expression of the Distortion with respect the step size (  ). 
 
Distortion Rate for Uniform Quantizer 
 
The Uniform Quantizer divides the input range B  in N quantization steps of the same 
size  , or  NB . If all N steps are coded with fixed code length, the average bit per 
sample or bit rate is NR 2log  or NR 2 . The step size can be written as: 

RB
N
B  2  

 
Let’s particularize the general Distortion expression: 
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For Uniform Quantizer we have 
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12

2
uqD  Distortion for Uniform Quantizer function of the step size. 

 
We can find the quantizer interval expression with respect the rate. Previously we found 
that: 

 2min, log)(xhR uq  Therefore: uqRxh min,)(2   
 
Now, we can find a relationship between R and D as: 
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Observation: 
Let’s calculate the Variance of the uniform quantizer We assume that the quantizer error 

is a uniform random variable between its bounds, ]
2

,
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 . Then 
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This is the same value as the distortion Dq if it is defined as the MSE. 
 

2
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Let’s find the relation between the variance after the quantizer and the variance of the 
input signal for different types of input PDF’s. 
 
Uniform Quantizer with Uniformly Distributed RV Input 
 
The objective is to find the Distortion function (quantizer variance) with respect the input 
variance. 
 
Imagine the case that the source is uniformly distributed along the range  NB . 

Therefore the pdf is 
B
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We found that for a Uniform quantizer, the variance is: 
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Therefore: 

uqx N 222    or  
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xuquq ND 222    Variance (DR) of the UQ with U distributed input vs. the input 
variance. 
 
For the case of fixed code length (which is the best choice if the input is uniformly 
distributed), we have NR 2  Therefore we have our final equation: 
Distortion function (quantizer variance) with respect the input variance 
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xuqD min,22  Distortion Rate for a UQ with uniformly distributed input 
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This is logical, since the input signal is a uniform RV in the range B. Its entropy is 
defined as: 
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Minimum Rate for a Uniform Quantizer with Uniform Distributed RV Input 
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Another way to find this out is from the distortion rate formula: 
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Uniform Quantizer with Gaussian Distributed RV Input 
 

If the input is Gaussian we have pdf is 
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2222 2   Distortion Rate for UQ with Gaussian Input Distribution. 

 
The entropy of this quantizer will be: 
Average bit rate for a Uniform Quantizer with Gaussian Distributed RV Input 
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Uniform Quantizer with Deterministic Input 
If the input signal is deterministic then, the expression of the quantizer entropy becomes: 
 

 2log)()( xhRXH qq  with 0)( xh  then: 
 2log)( qq RXH  

 
Other way to find this result is: 
 
The distortion Expression for the Uniform Quantizer is: 
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 2loguqR  Minimum Rate for UQ with Deterministic input. 
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ENTROPY CONSTRAINTED QUANTIZER DESIGN 
 
The previous study about minimizing the Average Distortion of the quantizer was based 
only on the constraint of minimizing the Distortion. 
If we want to minimize the Average Distortion with the Entropy constraint we will find 
maybe other solutions. 
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The entropy constraint is: 
 

0min)( RRXH q   meaning that the rate is larger than the entropy 
 
We can use the Lagrange Optimization Product. However we will use a heuristic 
approach to see if this problem has solution: 
 
Suppose that 0R  is very small. Therefore the Entropy is small. At the limit, the entropy is 
zero, which means that all points are located at one quantizer level jk xx ˆˆ   
 
Suppose that 0R  is big. The minimum 0R  value will be given by the maximum value of 
the entropy. This happens when all the symbols have uniform distribution. 

NXH q 2log)(  .  
 
We can use Lloyd-Max algorithm to find the solution. This algorithm places step sizes 
smaller when the pdf is larger (more quantization levels for more probable input values). 
 
Let’s compare both quantizers. 
First quantizer is Lloyd-Max, with average distortion MaxLloydD  . 
Second quantizer is an uniform quantizer with uqD  
 
The Lloyd-Max quantizer has less distortion, because was optimized. Therefore  
 

uqMaxLloyd DD   
 
However because entropy constraint, what is the best? 
 
Remember that: 
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For Uniform Quantizer, we have different values for Pk. However, for Lloyd-Max 
optimizer quantizer we will have more similar values for Pk. Just note that 


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points will be closer as the pdf is higher.  
 
Therefore when the pdf p(x) is larger the interval  1,  kkk tt is smaller and hence, the 
Pk tends to be constant for all intervals. 
 
Example: Let be a optimized quantizer where }25.0,25.0,25.0,25.0{kP  and an uniform 
quantizer where }1.0,4.0,4.0,1.0{kP  
The entropies will be: 
 
-0.25*log2(0.25)-0.25*log2(0.25)-0.25*log2(0.25)-0.25*log2(0.25)= 2 
 
-0.1*log2(0.1)-0.4*log2(0.4)-0.4*log2(0.4)-0.1*log2(0.1)= 1.7219 
 
Therefore, surprisingly the optimized quantizer has larger entropy. 
In general: 

)()( XHXH MaxLloyduq   therefore 
)()( XRXR MaxLloyduq   

Under Entropy constraints, the Uniform Quantizer is better. 
EOP 
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APPENDIX 
 
Gaussian probability function 
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Lloyd-Max algorithm. Matlab realization. 
 
Interval: [a, b]. Number of quantization steps N. 
 
Step 1: fix kx  and find kt  by the middle point formula 
At the first round, I set up the kx  points uniformly along the interval [a, b]. 
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Step 2: fix kt  and find kx  by the centroid formula 
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Of course this is the case in Uniform distribution, where )()( kxpxp   is constant. The 
quantization points kx  do not change at all. 
 
For Matlab purposes, we have to discretize the x points. Therefore our formula changes 
to: 
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Imagine we have 16 equidistant samples. And 4 levels of Quantization. The interval is 
from 0 to 4. Therefore the samples are located at: 
x = [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4] 
 
the starting quantization levels are 
xk = [0.5000, 1.5000, 2.5000, 3.5000] 
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The starting boundary levels are 
tk=[0, 1, 2, 3, 4] 
 
Imagine a Gaussian distribution. Let me write the probabilities of each sample. 
pk=[0.0001, 0.0004, 0.0022, 0.0088, 0.027, 0.0648, 0.121, 0.176, 0.1995, 0.1760, 0.1210, 
0.0648, 0.0270, 0.0088, 0.0022, 0.0004, 0.0001] Of course the sum of all probabilities is 
1. 
 
When calculating the next quantization levels: 
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We find a problem. The samples weight a lot the result of the numerator. Hence, the new 
quantization levels are not symmetric with respect the Gaussian distribution, although we 
know that that should be the case (see figure to the left) 
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This can be fixed if we increase the number of samples. For example if we analyze the 
case for 40 samples per quantization step (160 total samples) we see that the new 
quantization levels move symmetrically with respect the Gaussian distribution. In this last 
case the Distortion decreases from 0.0842 to 0.0612 
 
The code so far, calculates just one step of the Lloyd-Max algorithm. I have to make it 
recurrent until the Distortion stop decreasing by a set quantity. 
 
Matlab code: 
%mquantizer01 
%Luis M 2/14/2005 
%This file draws a quantizer with gaussian pdf 
 
clc 
clear all 
close all 
disp(['START MQUANTIZER01 //////////////////////////////// ']); 
%Quantizer limits 
a=0; 
b=4; 
%Quantizer steps 
N =4; 
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disp(['Q steps:',num2str(N)]); 
 
delta = (b-a)/N; 
disp(['delta (Q step size): ',num2str(delta)]); 
 
%pdf mean and variance 
mu = (a+b)/2; 
sigma = .5; 
%xresolution to set the samples. This number should be high for the 
%algorithm to work like in continuous time samples. 
div = 20; 
xres = delta/(div*2); 
 
%xvector 
x = a:xres:b; 
lx = length(x); 
pdfx = 1/(sigma*sqrt(2*pi))*exp(-(x-mu).^2/(2*sigma^2)); 
% pdfx = normpdf(x,mu,sigma); 
sumprob = sum(pdfx); 
%Normalize the pdf so the integral is one 
pdfx = pdfx/sumprob; 
disp(['Sum of probabilities: ',num2str(sum(pdfx))]); 
 
xperdelta = round(length(x)/N); 
disp(['samples per delta: ',num2str(xperdelta)]); 
 
%LLOYD-MAX algorithm. 
%Step 1: Fix xk and find tk (middle point law) 
%Choosing a uniform distribution for xk 
for i=1:N 
    xk(i,1)=a+delta*(i-1)+delta/2; 
    %This is just to drawing purposes, set the step amplitude as high as 
    %the pdf. 
    xkx(i)=pdfx(div*i+1+(i-1)*div); 
end 
 
%Choosing middle points for tk 
tk(1)=a; 
tk(N+1)=b; 
for k = 2:N 
    tk(k)=(xk(k,1)+xk(k-1,1))/2; 
end 
 
%Find the Distortion or Average Quantization Error. 
%k runs for each quantization step 
for k=1:N 
    %Accumulate distortion 
    accd = 0; 
    %index to find each x data inside a quantization step 
    i = 1+(k-1)*xperdelta; 
    %j runs for each data sample inside a quant. step 
    for j=tk(k):xres:tk(k+1)-xres 
        accd=accd+(x(i)-xk(k,1))^2*pdfx(i); 
        i=i+1; 
    end 
    dis(k,1)=accd; 
end 
 
%Step 2: Fix tk and find the new xk (centroid law) 
%k runs for each quantization step 
for k=1:N 
    %Calculate numerator 
    num = 0; 
    den = 0; 
     
    %index to find each x data inside a quantization step 
    i = 1+(k-1)*xperdelta; 
    %disp(['         k:      ',num2str(k)]); 
 
    %j runs for each data sample inside a quant. step 
    for j=tk(k):xres:tk(k+1)-xres 
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        %disp(['j: ',num2str(j),' x: ',num2str(x(i))]); 
        %disp(['i:      ',num2str(i)]); 
        %disp(['x: ',num2str(x(i)),' px: ',num2str(pdfx(i))]); 
        num=num+x(i)*pdfx(i); 
        den=den+pdfx(i); 
        i=i+1; 
    end 
    xk(k,2)=num/den; 
end 
 
xk 
 
%Find the Distortion or Average Quantization Error. 
%k runs for each quantization step 
for k=1:N 
    %Accumulate distortion 
    accd = 0; 
    %index to find each x data inside a quantization step 
    i = 1+(k-1)*xperdelta; 
    %j runs for each data sample inside a quant. step 
    for j=tk(k):xres:tk(k+1)-xres 
        accd=accd+(x(i)-xk(k,2))^2*pdfx(i); 
        i=i+1; 
    end 
    dis(k,2)=accd; 
end 
dis 
sumdist = sum(dis) 
 
%left to do is to make this algorithm recursive until the distortion stop 
%decreasing by a set quantity. 
 
 
%Plot figures 
%Plot the probability density function of the data 
plot(x,pdfx), grid on 
hold on; 
 
stem(xk(:,1),xkx,'gs'); 
 
tkx = 0*ones(1,length(tk)); 
stem(tk,tkx,'rd'); 
 
stem(xk(:,2),xkx,'kh'); zoom on 
legend('pdf','Q levels Step1','tk limits','Q levels Step2'); 
 
disp(['END MQUANTIZER01 //////////////////////////////// ']); 

 
Screen shot: 
START MQUANTIZER01 ////////////////////////////////  
Q steps:4 
delta (Q step size): 1 
Sum of probabilities: 1 
samples per delta: 40 
 
xk = 
 
    0.5000    0.8033 
    1.5000    1.6292 
    2.5000    2.3521 
    3.5000    3.1744 
 
 
dis = 
 
    0.0025    0.0006 
    0.0370    0.0292 
    0.0414    0.0307 
    0.0032    0.0007 
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sumdist = 
 
    0.0842    0.0612 
 
END MQUANTIZER01 //////////////////////////////// 

EOD 


