

Class 4: solving the Phase II-b of the class proyect.

EE7790 Special Topics

VISUAL SIGNAL PROCESSING

AND COMMUNICATIONS
SP11

Prof.: Dr. Luis M. Vicente

Project

Phase II: Baseline Image Encoding Decoding System using DCT

04/06/2011

Your name here

Student number: xxxxxxx

E-mail: your@email.here

Your name here# xxxxxxx 4/8/2011

your@emailhere.com

Page 2 of 11

Objective:

Implement a baseline image encoding and decoding system with DCT.

Steps to implement:

1. Write functions to read and write image data (done in class3).

2. Write a function to measure PSNR between two images. The images are stored in

files or in the memory (done in class3).

3. Write functions for DCT and IDCT at block and image levels.

4. Write functions for Quantization and inverse quantization at block and image

levels.

5. Training:

a. DC: 10-bit binary representation. (No prediction!)

b. AC: (run, size) + magnitude representation. Run: [0 15], size: [0 10].

c. Collect statistics on (run, size), and design a Huffman code table

6. Encoding: look up the Huffman table; count the number of bits of encoding.

7. Plot the rate-distortion curve by varying the quantization step size.

Your name here# xxxxxxx 4/8/2011

your@emailhere.com

Page 3 of 11

Methodology

The complete system diagram implemented in this project is the following:

I will work the system diagram by parts:

1. Read and write blocks.

2. PSNR block

3. DCT/IDCT blocks

4. Quantization/Inverse Quantization blocks

5. Image Coding/Image Decoding blocks

1. DCT/IDCT blocks

The DCT and IDCT blocks are implemented in three parts each one.

First, is implemented a function fdct.m that implements the Discrete Cosine Transform

for an eight element vector. The DCT/IDCT implemented satisfy the following equations

[1][2]:

1,....,0

2

12
cos)()(

2
)(

1

0

Nk
N

kn
nxkC

N
kDCT

N

n

1,....,0

2

12
cos)()(

2
)(

1

0

Nn
N

kn
kCkDCT

N
nx

N

k

Where

else

kforkC

1

02)(
2

1

In order to save processing time the summation at both equations were done using vector

multiplication and a look up table where the DCT basis functions were stored (using

mcreatedctcoeff.m and mcreatedctcoeff.m Matlab script files).

Secondly, is implemented a function fblockdct.m that performs the DCT to an 8x8 matrix

by calling fdct.m for each row, and then applying the same function to the result for each

column.

Third, is implemented a function fimagdct.m that performs the DCT of a 512x512 matrix

by calling fblockdct.m for each 8x8 sublocks.

Read

img DCT Q COD DEC

PSNR

IDCT
Write

img IQ

coeffs Huff coef Huff

Administrator
Rectangle

Administrator
Rectangle

Your name here# xxxxxxx 4/8/2011

your@emailhere.com

Page 4 of 11

The dual functions fdict.m, fblockidct.m, and fimagidct.m were implemented to do the

inverse operation at their respective level.

Each function was tested independently. First, the functions fdct/fidct were tested with the

mtestdct_idct.m Matlab script implemented for that purpose, and compared the results

with the Matlab dct function. The results were identical.

Secondly, the functions fblockdct/ fblockidct were tested with the mtestblockdct_idct.m

Matlab script implemented for that purpose, and verify that the block after DCT and

IDCT processes was perfectly reconstructed using the fpsnr.m function.

Third, the functions fimagdct / fimagidct were tested with the mprojII.m Matlab script

implemented for that purpose, and verify that the image after DCT and IDCT processes

was perfectly reconstructed using the fpsnr.m function.

Up to this moment, all processing was lossless; therefore, I verified that the input and

output images were exactly the same to verify the implementation was the appropriate

over all the process.

This part answer Step to implement #3

FIGURES

image1.512 (512x512)

100 200 300 400 500

100

200

300

400

500

DCT coefficients

100 200 300 400 500

100

200

300

400

500

DCT Q. coeff. Beta: 1

100 200 300 400 500

100

200

300

400

500

PSNR: 35.805

Reconstr. image1.512 (512x512)

100 200 300 400 500

100

200

300

400

500

image2.512 (512x512)

100 200 300 400 500

100

200

300

400

500

DCT coefficients

100 200 300 400 500

100

200

300

400

500

DCT Q. coeff. Beta: 1

100 200 300 400 500

100

200

300

400

500

PSNR: 36.0185

Reconstr. image2.512 (512x512)

100 200 300 400 500

100

200

300

400

500

Your name here# xxxxxxx 4/8/2011

your@emailhere.com

Page 5 of 11

image3.512 (512x512)

100 200 300 400 500

100

200

300

400

500

DCT coefficients

100 200 300 400 500

100

200

300

400

500

DCT Q. coeff. Beta: 1

100 200 300 400 500

100

200

300

400

500

PSNR: 32.7245

Reconstr. image3.512 (512x512)

100 200 300 400 500

100

200

300

400

500

image4.512 (512x512)

100 200 300 400 500

100

200

300

400

500

DCT coefficients

100 200 300 400 500

100

200

300

400

500

DCT Q. coeff. Beta: 1

100 200 300 400 500

100

200

300

400

500

PSNR: 32.5445

Reconstr. image4.512 (512x512)

100 200 300 400 500

100

200

300

400

500

image5.512 (512x512)

100 200 300 400 500

100

200

300

400

500

DCT coefficients

100 200 300 400 500

100

200

300

400

500

DCT Q. coeff. Beta: 1

100 200 300 400 500

100

200

300

400

500

PSNR: 32.5423

Reconstr. image5.512 (512x512)

100 200 300 400 500

100

200

300

400

500

Your name here# xxxxxxx 4/8/2011

your@emailhere.com

Page 6 of 11

APPENDIX 1 (Source Code)

The main script is called mprojII.m. This script read an image, does the DCT. Then do

the inverse process to reconstruct the image. The code writes out the PSNR as a measure

of the quality of reconstruction. It also plots the original and reconstructed image, as well

as the DCT values.

It calls the functions freadimg fimagdct fimagidct fpsnr fwriteimg. These functions also

call several functions which operate down to the block and vector level.

Before run the script (by typing at the Matlab working directory mprojII), open the script

with the Matlab editor and select the image to read.

The source code for the main script is the following:

%mprojII

%Luis M Vicente 945 995 started 4/2/2005

%script to read files for phase II

%calls custom functions: freadimg fimagdct fimagidct fpsnr fwriteimg

%calls data: image5.512

clear all, close all, clc

disp(['/////////////////////Project II Main Program/////////////////////'])

%Name of the image to analyze and the reconstructed image to write to

strim = 'image1.512';

strom = ['rec_',strim];

imsize = 512;

subi = imsize;

isigd = freadimg(strim,imsize);

%%%

%create a sub image to lesser the processing time COMMENT OUT IF NOT USED

%This one is good for image5.512 to see the boat

% subi = 160;

% xi=170;

% yi=190;

% isigd = isigd(xi:xi+subi-1,yi:yi+subi-1);

%%%

%create a sub image to lesser the processing time COMMENT OUT IF NOT USED

%This one is good for image1.512 to see the face

% subi = 80;

% xi=260;

% yi=260;

% isigd = isigd(xi:xi+subi-1,yi:yi+subi-1);

%%%

%Do the DCT of the whole image

tic;

DCTsigd = fimagdct(isigd);

disp(['Progress message: DCT done']);

toc;

%%%

%

%Here it will go the code for next classes: Quantizer, encoder and decoder Unquantizer

%

%%%

%Do the IDCT of the whole image

rsigd = fimagidct(DCTsigd);

disp(['Progress message: IDCT done']);

toc;

%compare the images

PSNR = fpsnr(isigd, rsigd);

%%%

%Write the image in a new file for later comparisons

fwriteimg(strom,rsigd);

Your name here# xxxxxxx 4/8/2011

your@emailhere.com

Page 7 of 11

%%%

disp('If you want to see the images, wait one second');

pause(1)

%PLOT SECTION

%Plot input image

figure

subplot(2,2,1)

imagesc(isigd);

colormap('gray');zoom on;

title([strim, ' (', num2str(subi),'x',num2str(subi),')']);

%Plot DCT image

subplot(2,2,2)

imagesc(DCTsigd);

colormap('gray');zoom on;

title(['DCT coefficients'])

%Plot reconstructed image

subplot(2,2,4)

imagesc(rsigd);

colormap('gray');zoom on;

title(['Reconstr. ',strim, ' (', num2str(subi),'x',...

 num2str(subi),')'])

xlabel(['PSNR: ',num2str(PSNR)])

disp(['/////////////////////Project II End of Main Program/////////////////////'])

Next, the functions used in this script:

%freadimg

%Function to read an image

function [isigd]=freadimg(strim,imsize)

fid = fopen(strim,'rb');

isigc = fread(fid,[imsize,imsize],'uchar');

isigd = double(isigc)';

fclose(fid);

Your name here# xxxxxxx 4/8/2011

your@emailhere.com

Page 8 of 11

%fimagdct

%Function to create the dct of a 512x512 image

%calls custom functions: fblockdct

function [oimage]=fimagdct(iimage)

[rowb,colb] = size(iimage);

%load the dct coefficients stored in mat file

load dctcoeff

%I have to divide the image in 8x8 blocks

for rowblock=1:8:rowb

 for colblock=1:8:colb

 %disp(['row: ', num2str(rowblock),' col: ', num2str(colblock)]);

 %select a block

 iblock=iimage(rowblock:rowblock+7,colblock:colblock+7);

 %performthe dct

 oblock=fblockdct(iblock,lut);

 %store in the output DCT image

 oimage(rowblock:rowblock+7,colblock:colblock+7)=oblock;

 end

end

%fblockdct

%Function to create the dct of a 8*8 block

%calls custom functions: fdct

function [oblock]=fblockdct(iblock,lut)

[rowb,colb] = size(iblock);

%For each row make the dct

for ir = 1:rowb

 xsignal=iblock(ir,:);

 Stemp(ir,:)=fdct(xsignal,lut);

end

%For each column make the dct

for ic = 1:colb

 %transpose to create a row vector

 xsignal=Stemp(:,ic)';

 %transpose the output of fdct to store in a column

 oblock(:,ic)=fdct(xsignal,lut)';

end

%fdct

%Function to calculate the DCT of a 8x8 vector %calls data: dctcoeff.mat

function [S]=fdct(xsignal,lut)

% %load the dct coefficients stored in mat file

slut = size(lut);

n = slut(1,1);

%remember in Matlab indexes start at 1

C = ones(1,n);

C(1) = 2^(-1/2);

%Find the DCT of an input signal

for u=0:n-1

 uin=u+1;

 %matrix multiplication of the signal with the DCT coefficients

 mmsdct = xsignal*lut(uin,:)';

 %DCT coefficient

 S(uin)=sqrt(2/n)*C(uin)*mmsdct;

end

Your name here# xxxxxxx 4/8/2011

your@emailhere.com

Page 9 of 11

%fimagidct

%Function to create the Idct of a 512x512 image

%calls custom functions: fblockidct

function [oimage]=fimagidct(iimage)

[rowb,colb] = size(iimage);

%load the idct coefficients stored in mat file

load idct8

%I have to divide the image in 8x8 blocks

for rowblock=1:8:rowb

 for colblock=1:8:colb

 %disp(['row: ', num2str(rowblock),' col: ', num2str(colblock)]);

 %select a block

 iblock=iimage(rowblock:rowblock+7,colblock:colblock+7);

 %performthe dct

 oblock=fblockidct(iblock,liut);

 %store in the output DCT image

 oimage(rowblock:rowblock+7,colblock:colblock+7)=oblock;

 end

end

%fblockidct

%Function to create the dct of a 8*8 block

%calls custom functions: fidct

function [oblock]=fblockidct(iblock,liut)

[rowb,colb] = size(iblock);

%For each row make the dct

for ir = 1:rowb

 Ssignal=iblock(ir,:);

 xtemp(ir,:)=fidct(Ssignal,liut);

end

%For each column make the dct

for ic = 1:colb

 %transpose to create a row vector

 Ssignal=xtemp(:,ic)';

 %transpose the output of fdct to store in a column

 oblock(:,ic)=fidct(Ssignal,liut)';

end

%fidct

%Function to calculate the IDCT of a 8x8 vector

%calls data: dctcoeff.mat

function [xsignal]=fidct(S,liut)

%load the idct coefficients stored in mat file

% load idct8

sliut = size(liut);

n = sliut(1,1);

%Find the IDCT of an input signal

for u=0:n-1

 uin=u+1;

 %IDCT coefficient

 xsignal(uin) = S*liut(uin,:)';

end

Your name here# xxxxxxx 4/8/2011

your@emailhere.com

Page 10 of 11

%%%

%function PSNR process

function [PSNR]=fpsnr(image1, image2)

%substract one image from another

%dij = abs(image1 - image2);

dij = (image1 - image2);

%get the mean

% mdij = mean(mean(dij))

mdij = mean(dij(:));

%mdij2 = sum(sum(dij))/prod(size(dij))

%square without the mean

teee =(dij-mdij).^2;

%find the mean square error

MSE = abs(sum(sum(teee))/prod(size(dij)));

%when MSE is small.

if(MSE < 6.5025e-006)

 MSE = 6.5025e-006;

 disp(['Achieved higher Limit of PSNR. The images are the same'])

end

%find the inverse multiplied by the peak value of pixel

IMSE = 255^2/MSE;

%find the PSNR

PSNR = 10*log10(IMSE);

% disp(['MSE: ',num2str(MSE)])

disp(['PSNR: ',num2str(PSNR)])

%fwriteimg

%Function to write an image

function []=fwriteimg(strim,rsigd)

rsigd = round(rsigd');

rsigc = char(rsigd);

fid = fopen(strim,'wb');

isigc = fwrite(fid,rsigc,'uchar');

fclose(fid);

Screenshot
/////////////////////Project II Main Program/////////////////////

Progress message: DCT done

Elapsed time is 16.504000 seconds.

Progress message: IDCT done

Elapsed time is 508.201000 seconds.

PSNR: 35.805

If you want to see the images, wait one second

/////////////////////Project II End of Main Program/////////////////////

Your name here# xxxxxxx 4/8/2011

your@emailhere.com

Page 11 of 11

REFERENCES

[1] Dr. Zhihai (Henry) He, “Visual Signal Processing and Communitation Class Notes”.

JPEG Image Compression Standard. Missouri University at Columbia. 2005.

[2] Yao Wang, Jörn Ostermann, Ya-Qin Zhang., “Video Processing and

Communications”, Prentice Hall, Inc 2002.

[3] Matlab, “Special Topics, Signal Processing ToolBox”. The MathWorks Inc. 2004.

