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CHAPTER 1

Entropy
Measures the uncertainty of a process

HOO =Y p(x)logz(ﬁ) =~ p(x)log, (p(¥))

For N size alphabet we have
N 1 N

HOX) = p, Ing(?) =—> pilog,(p;)
i=1 i i=1

Joint Entropy

1
H(X,Y)= y)log,
( )mzxyép(xy)og(p(x’y)

)

Conditional Entropy
Means of additional uncertainty

H(X/Y)=>">" p(x, y)log,(———) = =>.>.p(x,y)log, (p(x/y))

xeX yeY p(X/ y) xeX yeY

HOXI) =557 06 o, (B30 since pxr )= 530

Operating
H(X/Y)==3">"p(x,y)log, (p(x,y)) - log, p(y)]

xeX yeY

H(X/Y)==2>" p(x,y)log,(p(x,¥)) - p(x,y)log, p(y)

xeX yeY

H(X7Y)==>>"p(x,y)log,(p(x,Y)) —[—Z[Z p(x, y)Jlogz p(y)}

xeX yeY yeY \ xeX

H(X/Y)=H(X ,Y){—Z p(y)log, IO(Y)}

yeY

H(X/Y)=H(X,Y)-H(Y)

Meaning: the uncertainty of X given Y, is the Uncertainty of both minus the uncertainty of Y. (Graphically is

the left side moon-shape)
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H(X)
Similarly:
HY/X)=H(X,Y)-H(X)

H(X) H(Y)
Because H(X,Y)=H(Y, X) we have that:

HEY /X)+H(X)=H(X/Y)+H(Y) =H(X,Y)

HX) H(Y)

Rearranging
H(X)-H(X/Y)=+H(Y)-H(Y/X) =1(X,Y) is the intersection, or mutual Information between both

RV’s
@"

H(X) H(Y)
From last equation we have
H(X)=1(X,Y)+H(X/Y)
HY)=I1(X,Y)+H(Y/X)
From the previous one we have
H(X,Y)=H( /X)+H(X)
H(X,Y)=H(Y)+H(X)=1(X,Y) (The sum of both minus the intersection)

Information
The Information is defined as

1(X,Y)= XZ);yZY: p(X, y) Iogz(%) or from the formulas:

1(X,Y)=H(X)=H(X/Y)
L(X,Y)=H(Y)=H(Y /X)
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We can also find the formula of Information from

I(XY)=H(X)-H(X/Y) =Y p(x)logz(—)—L—zz p(x, y)log, (P Y) y))j

xeX xeX yeY ( )
=33 p0xy)log; (o) 33 () log, (B0 = 575 pi y)[mgz(_) +log, (P0Y) y>)]

xeX yeY ( ) xeX yeY ( ) ( )
:Zzp(x,y)[ (B p( Y) )j

xeX yeY ( )p(y)
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Let’s do an exercise:
Let’s be two random variables, each of them can have these values {a,b,c,d}

xX=
a b C d
y=| a 1/8 1/16 1/32 1/32 p(y=a)=1/4
b 1/16 1/8 1/32 1/32 p(y=b)=1/4
C 1/16 1/16 1/16 1/16 p(y=c)=1/4
d 1/4 0 0 0 p(y=d)=1/4
p(x=a)=1/2 | p(x=b)=1/4 | p(x=c)=1/8 | p(x=d)=1/8
Joint Probability. We know that p(x=a,y=a)=1/8 etc.
Marginal Probability
p(x=a,Vvy)= Z p(x=a,y)=p(a,a)+ p(a,b)+ p(a,c)+ p(a, d)_1 i+i+1:E etc...
v 8 16 16 4 2
Conditional Probability.
p(x,y)

p(x/y)= T probability of x when y has happened.
ply

p(x=a,y=c) 1/16 4 1

Pix=aly=c)= p(y=c) T 14 16 4

Entropy

H(X)=XEZXZP(X)|092(T)—E gz(m)+zlog24+—I0928+—Iog28 1.75
H(Y):Zp(y)logz(ﬁ> 2

Joint Entropy
H(X,Y)= ZZ p(X, y)Iogz(—)) 3.375

xeX yeY (

Conditional Entropy
H(X/Y) == p(x,y)log,(p(x/ y)) =1.375 or

xeX yeY

H(X/Y)=H(X,Y)-H(Y)=3.375-2=1.375

H(Y/X)==>>"p(x,y)log,(p(y/x))=1.625 or

xeX yeY
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HY/X)=H(X,Y)-H(X)=3.375-1.75=1.625

Information

1(X,Y) = y)log, (PXY) y 6375
(X,Y) XEZXZVZEY)p(X y)log (p(x)p(y)) or

1(X,Y)=H(X)-H(X /Y)=1.75-1.375=0.375
L(X,Y)=H(Y)=H(Y/X)=2-1.625=0.375

Other formulas we can confirm:
H(X)=1(X,Y)+H(X/Y)=0.375+1.375=1.75
HY)=I1(X,Y)+H(Y/X)=0.375+1.625=2
H(X,Y)=H({)+H(X)-1(X,Y)=2+1.75-0.375=3.375

Jensen’s Inequality

CONVEX FUNCTIONS
A function is said to be convex if
f(AX, +(@-A)x,) < Af (x)+ (12— A) f(x,) like next figure

9 I I I I I I I I I Y
flambd*x1+(1-lambd)x2) | | | |
sl |ambd*f(x1)+(1-|ambd)f(x2),,,T‘,,,},,,‘T,,// __
| | | | | | | \,/ |
| | | | | | | A |
e
| | | | | | /\,/ |
| | | | | | i | |
| | | | | | /\ | |
6"’T”’F”T”T”’T”)/é” I R
| | | | | | | | |
5 I I I I /\ I I |
F-—f———l———t -~ -~ —fF —— it it Rty
| | | 7 | | | |
I I I [ I I I I
4L -4 A e
| | \//\ | | | | |
| | Pe | | | | | |
| 1 | | | | |
E ] i B e i e e i it Ry
| | | | | | |
0 | | | | | | |
A e i e e B i At el i il
A | | | | | |
| | | | | | | |
1 1 1 1 1 1 1 1 1 1
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

LEMMA:
If a function is convex, this holds:

2 2 2
f(z p.X; ] <> p;f(x) being p; the probability of x, and we know that >_ p, =1
i=1 i=1 i=1

Jensen’s Inequality is this equation extended to N points

Let’s prove this by mathematical induction.

PROOF OF JENSEN’S INEQUALITY:
We know that this is true for N=2, as it is shown in the figure above.
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[z p, ,j < z p, f(x;) Because

f(px, +(@0- pl)x )< p, f(x;)+ (- p,) f(x,) Because convergence Lemma.

Lets suppose it is true for N=K-1.

K-1

[z p .j < z p. f(x) we have to assume that > p, =

i=1
Lets study for N=K

[z p,x,j<z p, T (x,) and we assume that Z P, =

i=1
We can decompose the right side into

Zp. D+ P Fxe)

To apply the propertles of K-1, we have to normalize the probability from 1 to K-1 to be one:

(—IOK)Z(l_ X, )+ Py %y )
We define now:

Qi =P and we know that gqi =
Thereforrt)ak: "

(1- pK)iqi f(x )+ P f(xc)

Looking at the left side term, and from the formula K-1 rewritten here...

f[z‘jqixijﬁgqif(x)

..we can expand the right side to the left as:

(1- pK)f(ZQ.X.ij (%)< (@- pK)ZQ. pe f (%)

=1

K-1
let’s be > g =Y,

i=1

(L= ) F(¥o)+ P Fx )< (- pK)ZQ. pe f(xc)

Remember that for N=2 we have

f(px, + PyX, )< p, f(x)+ p,f(x,) and even more
f((l_ pz)X1+ pzxz)S - pz)f(xi)"‘ pzf(xz) because p, + p, =1

Therefore we can write:
f((l_ Pe)Yo + pKXK)S A-p)f (YO)+ Py f (XK)
Hence:
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K-1
f((l_ P) Yo + pKXK)S - pK)ZQi f (Xi)+ P f (XK)
i=1

K-1
Knowing that Y g,x = Y,

f[(l—pK)Zqixi+pKXJ<(l pK)Zq. D+ P f (%)
P

k

And that g, =

fI (- px Z plp X+pKXKJ (1_pK)Z__:qif(Xi)+ pKf(XK)

i 1 k

Then:

fgpixi+pKXj a- pK)Zq. X )+ Py f(xc)

Finally the left side is just

f ipixijsa— pK)gqif(xi)+ pe F (%)

Of course the right side is (since the beginning)

f Zp, ,j£2p, ) Itis proved.

Jensen’s inequality allows us to prove a lot of interesting things about the Entropy. Just note that —log, () is a
convex function.

Then, because Jensen’s iquequality we have that:

Iogz[Z piX j < Z p.[-log, (x

Example:
Lets be a RV uniform distributed on N. Therefore we can write in general:

HOX)=-2p Iogz(pi)=Zpi(—l092(pi))

If RV is uniform then p, =—

HO) =3 (Iogz(—j= ;[—Iogz(ﬁﬂﬁogm

i=1

We know that uniform distributed RV is the most uncertain. However, can we prove that H(X) <log, N for all
RV?

Let’s use Jensen inequality to prove this:
First of all let me write:
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N
log, N = (log, N)*1= IogzN*Zp.=ZplogzN) Z(p.logz ]

i=1 i=1
Therefore:

N 1
log , N :_Z(pi Iogzﬁj
i=1

I need to prove that H (X)élog2 N for all RV, or what is the same:

log, N —H(X)>0

Let’s write

log, N -H(X) = Z(p.logz ] i(p.logsz

i=1

or

log, N-H(X)= p,| —log, —
i 2 “Np |

Because Jensen’s inequality we can expand the right side to be:

N 1 N 1
|ngN—H(X): Pi _IogzN_ Z—|0g2 Z(pu ND.J

i=1

of$3) -l

Therefore:
log, N-H(X)>0

Other play (just my ideas here):
Because Jensen’s inequality we can expand to the left as:

—Iogzzpipj Zp —log,(p,))=H(X)

—Iogzzpij<2p —log,(p;))=H(X)

Therefore, including last demonstration upper limit of the Entropy:

N
—log,| >’ pizjs H(X)<log, N
i=1

Therefore if p, =% (uniformly distributed)

N
—Iog{Z%}s H(X)<log, N

i=1

—Iogz(N %)s H(X)<log, N

Luis M. Vicente Ph.D.
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log,(N)<H(X)<log, N

DATA COMPRESSION

We have two types of data compression: lossless and lossy.
Lossy data compression has two steps: Quantization and lossless compression.

ENCODER
Given a symbol, we define a code for each symbol.
e Non-singular code. If x; #x, = C(x, )= C(x;)

e Uniquely decodable. If C(x,X,....x,)=C(x,)C(x,)...C(x,) or

e Prefix code: No codeword is a prefix of another codeword. This is also called instantaneous coding.

Definition: length of codeword. I, = length(C(x;))
Definition: probability of a symbol p, = prob(x;)

Definition: Avg. bits per symbol L = Z p,l, = R (Average Bit Rate, bits per symbol)

KRAFT INEQUALITY
For any instantaneous code over an alphabet of size D and lengths 1., 1,....1,, next inequality holds:

i D" <1
i=1

PROOF:
Letbe |__ =max(l,l,...l,) . Consider all branch at level |__ . At other levels, each branch has D' possible

descendants leaves. (descendant defined as leaves to the right of the actual branch level.)

For example, in a binary code (D=2), if |___ =3; at level 2 each branch has 2°* = 2 descendants leaves. at level
1 each branch has 2** = 4 descendants leaves. At level 3 each branch has one descendant leaf.

Level 1 Level 2 Level 3

0
O
¢ 8
Q
¢ O
°

o

Each codeword branch (next to a leaf, in bold at the figure) have only a descendant leaf, because is a prefix
code; hence, each codeword is not a prefix of any other.
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The sum of all codeword branches (black nodes) is less than the sum of all branches at level 3 (all nodes) which
is 2™ Therefore:

black node,,, (0) + black node,, ., (1,0) + black node,,,; (1,1,0) + black node,,; (LL1) < Z nodes Each branch has

level 3

descendant leaves depending on its level, therefore

2|ma><_ + 2|ma><_ + 2|max_3 + 2|max_3 S 2|ma><

N
Z lmax i < [

DD < D'™

'Mz K

I
LN

Dlmax ZN: D—li < Dlmax

N
> D™ <1 the proof.
i=1

MINIMIZATION OF BIT RATE, OR EXPECTED LENGTH.
For binary codes we have:

N N
L=>"pl, =R and we know this holds > 27" <1

i=1 i=1
We want to minimize L. We will use the Lagrange multiplier method.
In that method we need to minimize f(x) with a constrain g(x)=0

I, )= i pl, m{iz-'i —1}

N
The minimum of this function is also the minimum of L = Z p,l. = R. Therefore lets derivate to find the
i=1

A3l dy) _ (Zpl M[.Zizzh 1D
al, o,

We equate this to zero and solve for |,
0=p +A(-12"In2

. __ P
Aln2

Plugging this value at the constrain equation we have
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N p

> 2t -1= 0<:>Z—' 1=0
i=1

Solvmg for A

/“ z p, =1 and because z p, =1 we have

_ L
In2
Pluggin this value of A in the derivate equation to solve for |,

0=p +A(-1)2"In2
0=np, +i(—1)2-'i In2
In2

27" = pi
1
—I;=log, p; or |, =log, —
Finally we plug this value to find the minimum of L

= i pil; =Rnin
i1

1
l;=log, —
i 2 o

N

=D Pilog, — ) —H(X)

i=1 i

The minimum average length of bit rate is the Entropy itself.
EXAM POSSIBLE QUESTIONS

Find all possible relations between Information and Entropy.
Prove Jensen’s inequality
Prove H(X) <log, N for all Random Variables

Find the theoretical minimum for Entropy.
Prove Kraft Inequality
Find the minimum average bit rate for instantaneous coding.

What is the implementation of the Shannon codeing?
What is the implementation of Huffman coding?

10 Find the bounds of the average bit rate for Vector coding
New Questions

11. Prove that the Shannon Coding agree with Kraft Inequality.

©CoNoOs WDNE

EOD

Find the minimum average bit rate for instantaneous coding using Jensen’s inequality.
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