CHAPTER 1

Entropy

Measures the uncertainty of a process
$H(X)=\sum_{x \in X} p(x) \log _{2}\left(\frac{1}{p(x)}\right)=-\sum_{x \in X} p(x) \log _{2}(p(x))$
For N size alphabet we have
$H(X)=\sum_{i=1}^{N} p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)=-\sum_{i=1}^{N} p_{i} \log _{2}\left(p_{i}\right)$

Joint Entropy

$H(X, Y)=\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}\left(\frac{1}{p(x, y)}\right)$

Conditional Entropy

Means of additional uncertainty
$H(X / Y)=\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}\left(\frac{1}{p(x / y)}\right)=-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}(p(x / y))$
$H(X / Y)=-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}\left(\frac{p(x, y)}{p(y)}\right)$ since $p(x / y)=\frac{p(x, y)}{p(y)}$
Operating
$H(X / Y)=-\sum_{x \in X} \sum_{y \in Y} p(x, y)\left[\log _{2}(p(x, y))-\log _{2} p(y)\right]$
$H(X / Y)=-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}(p(x, y))-p(x, y) \log _{2} p(y)$
$H(X / Y)=-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}(p(x, y))-\left[-\sum_{y \in Y}\left(\sum_{x \in X} p(x, y)\right) \log _{2} p(y)\right]$
$H(X / Y)=H(X, Y)-\left[-\sum_{y \in Y} p(y) \log _{2} p(y)\right]$
$H(X / Y)=H(X, Y)-H(Y)$
Meaning: the uncertainty of X given Y, is the Uncertainty of both minus the uncertainty of Y. (Graphically is the left side moon-shape)

H(X)

Similarly:
$H(Y / X)=H(X, Y)-H(X)$

Because $H(X, Y)=H(Y, X)$ we have that:
$H(Y / X)+H(X)=H(X / Y)+H(Y)=H(X, Y)$

Rearranging
$H(X)-H(X / Y)=+H(Y)-H(Y / X)=I(X, Y)$ is the intersection, or mutual Information between both RV's

From last equation we have
$H(X)=I(X, Y)+H(X / Y)$
$H(Y)=I(X, Y)+H(Y / X)$
From the previous one we have
$H(X, Y)=H(Y / X)+H(X)$
$H(X, Y)=H(Y)+H(X)-I(X, Y)$ (The sum of both minus the intersection)

Information

The Information is defined as
$I(X, Y)=\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}\left(\frac{p(x, y)}{p(x) p(y)}\right)$ or from the formulas:
$I(X, Y)=H(X)-H(X / Y)$
$I(X, Y)=H(Y)-H(Y / X)$

We can also find the formula of Information from

$$
\begin{aligned}
& I(X, Y)=H(X)-H(X / Y)=\sum_{x \in X} p(x) \log _{2}\left(\frac{1}{p(x)}\right)-\left(-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}\left(\frac{p(x, y)}{p(y)}\right)\right) \\
& =\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}\left(\frac{1}{p(x)}\right)+\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}\left(\frac{p(x, y)}{p(y)}\right)=\sum_{x \in X} \sum_{y \in Y} p(x, y)\left(\log _{2}\left(\frac{1}{p(x)}\right)+\log _{2}\left(\frac{p(x, y)}{p(y)}\right)\right) \\
& =\sum_{x \in X} \sum_{y \in Y} p(x, y)\left(\log _{2}\left(\frac{p(x, y)}{p(x) p(y)}\right)\right)
\end{aligned}
$$

Let's do an exercise:

Let's be two random variables, each of them can have these values $\{a, b, c, d\}$

		$\boldsymbol{x}=$				
		\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	
$\boldsymbol{y}=$	\boldsymbol{a}	$1 / 8$	$1 / 16$	$1 / 32$	$1 / 32$	$p(y=a)=1 / 4$
	\boldsymbol{b}	$1 / 16$	$1 / 8$	$1 / 32$	$1 / 32$	$p(y=b)=1 / 4$
	\boldsymbol{c}	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$	$p(y=c)=1 / 4$
	\boldsymbol{d}	$1 / 4$	0	0	0	$p(y=d)=1 / 4$
		$p(x=a)=1 / 2$	$p(x=b)=1 / 4$	$p(x=c)=1 / 8$	$p(x=d)=1 / 8$	

Joint Probability. We know that $p(x=a, y=a)=1 / 8$ etc.
Marginal Probability.
$p(x=a, \forall y)=\sum_{y=a}^{d} p(x=a, y)=p(a, a)+p(a, b)+p(a, c)+p(a, d)=\frac{1}{8}+\frac{1}{16}+\frac{1}{16}+\frac{1}{4}=\frac{1}{2}$ etc. \ldots

Conditional Probability.

$p(x / y)=\frac{p(x, y)}{p(y)}$ probability of x when y has happened.
$p(x=a / y=c)=\frac{p(x=a, y=c)}{p(y=c)}=\frac{1 / 16}{1 / 4}=\frac{4}{16}=\frac{1}{4}$

Entropy

$H(X)=\sum_{x \in X} p(x) \log _{2}\left(\frac{1}{p(x)}\right)=\frac{1}{2} \log _{2}\left(\frac{1}{1 / 2}\right)+\frac{1}{4} \log _{2} 4+\frac{1}{8} \log _{2} 8+\frac{1}{8} \log _{2} 8=1.75$
$H(Y)=\sum_{y \in Y} p(y) \log _{2}\left(\frac{1}{p(y)}\right)=2$

Joint Entropy

$H(X, Y)=\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}\left(\frac{1}{p(x, y)}\right)=3.375$

Conditional Entropy

$H(X / Y)=-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}(p(x / y))=1.375$ or
$H(X / Y)=H(X, Y)-H(Y)=3.375-2=1.375$
$H(Y / X)=-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}(p(y / x))=1.625$ or
$H(Y / X)=H(X, Y)-H(X)=3.375-1.75=1.625$

Information

$I(X, Y)=\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2}\left(\frac{p(x, y)}{p(x) p(y)}\right)=0.375$ or
$I(X, Y)=H(X)-H(X / Y)=1.75-1.375=0.375$
$I(X, Y)=H(Y)-H(Y / X)=2-1.625=0.375$
Other formulas we can confirm:
$H(X)=I(X, Y)+H(X / Y)=0.375+1.375=1.75$
$H(Y)=I(X, Y)+H(Y / X)=0.375+1.625=2$
$H(X, Y)=H(Y)+H(X)-I(X, Y)=2+1.75-0.375=3.375$

Jensen's Inequality

CONVEX FUNCTIONS

A function is said to be convex if $f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)$ like next figure

LEMMA:

If a function is convex, this holds:
$f\left(\sum_{i=1}^{2} p_{i} x_{i}\right) \leq \sum_{i=1}^{2} p_{i} f\left(x_{i}\right)$ being p_{i} the probability of x_{i} and we know that $\sum_{i=1}^{2} p_{i}=1$

Jensen's Inequality is this equation extended to N points

$$
f\left(\sum_{i=1}^{N} p_{i} x_{i}\right) \leq \sum_{i=1}^{N} p_{i} f\left(x_{i}\right)
$$

Let's prove this by mathematical induction.
PROOF OF JENSEN'S INEQUALITY:
We know that this is true for $\mathrm{N}=2$, as it is shown in the figure above.
$f\left(\sum_{i=1}^{2} p_{i} x_{i}\right) \leq \sum_{i=1}^{2} p_{i} f\left(x_{i}\right)$ Because
$f\left(p_{1} x_{1}+\left(1-p_{1}\right) x_{1}\right) \leq p_{1} f\left(x_{i}\right)+\left(1-p_{1}\right) f\left(x_{i}\right)$ Because convergence Lemma.
Lets suppose it is true for $\mathrm{N}=\mathrm{K}-1$.
$f\left(\sum_{i=1}^{K-1} p_{i} x_{i}\right) \leq \sum_{i=1}^{K-1} p_{i} f\left(x_{i}\right)$ we have to assume that $\sum_{i=1}^{K-1} p_{i}=1$
Lets study for $\mathrm{N}=\mathrm{K}$
$f\left(\sum_{i=1}^{K} p_{i} x_{i}\right) \stackrel{?}{\leq} \sum_{i=1}^{K} p_{i} f\left(x_{i}\right)$ and we assume that $\sum_{i=1}^{K} p_{i}=1$
we can decompose the right side into
$\sum_{i=1}^{K-1} p_{i} f\left(x_{i}\right)+p_{K} f\left(x_{K}\right)$
To apply the properties of K-1, we have to normalize the probability from 1 to K-1 to be one:
$\left(1-p_{K}\right) \sum_{i=1}^{K-1} \frac{p_{i}}{\left(1-p_{K}\right)} f\left(x_{i}\right)+p_{K} f\left(x_{K}\right)$
We define now:
$q_{i}=\frac{p_{i}}{1-p_{k}}$ and we know that $\sum_{i=1}^{K-1} q_{i}=1$
Therefore:
$\left(1-p_{K}\right) \sum_{i=1}^{K-1} q_{i} f\left(x_{i}\right)+p_{K} f\left(x_{K}\right)$
Looking at the left side term, and from the formula K -1 rewritten here...
$f\left(\sum_{i=1}^{K-1} q_{i} x_{i}\right) \leq \sum_{i=1}^{K-1} q_{i} f\left(x_{i}\right)$
...we can expand the right side to the left as:
$\left(1-p_{K}\right) f\left(\sum_{i=1}^{K-1} q_{i} x_{i}\right)+p_{K} f\left(x_{K}\right) \leq\left(1-p_{K}\right) \sum_{i=1}^{K-1} q_{i} f\left(x_{i}\right)+p_{K} f\left(x_{K}\right)$
let's be $\sum_{i=1}^{K-1} q_{i} x_{i}=y_{0}$
$\left(1-p_{K}\right) f\left(y_{0}\right)+p_{K} f\left(x_{K}\right) \leq\left(1-p_{K}\right) \sum_{i=1}^{K-1} q_{i} f\left(x_{i}\right)+p_{K} f\left(x_{K}\right)$
Remember that for $\mathrm{N}=2$ we have
$f\left(\sum_{i=1}^{2} p_{i} x_{i}\right) \leq \sum_{i=1}^{2} p_{i} f\left(x_{i}\right)$
$f\left(p_{1} x_{1}+p_{2} x_{2}\right) \leq p_{1} f\left(x_{1}\right)+p_{2} f\left(x_{2}\right)$ and even more
$f\left(\left(1-p_{2}\right) x_{1}+p_{2} x_{2}\right) \leq\left(1-p_{2}\right) f\left(x_{1}\right)+p_{2} f\left(x_{2}\right)$ because $p_{1}+p_{2}=1$
Therefore we can write:

$$
f\left(\left(1-p_{K}\right) y_{0}+p_{K} x_{K}\right) \leq\left(1-p_{K}\right) f\left(y_{0}\right)+p_{K} f\left(x_{K}\right)
$$

Hence:
$f\left(\left(1-p_{K}\right) y_{0}+p_{K} x_{K}\right) \leq\left(1-p_{K}\right) \sum_{i=1}^{K-1} q_{i} f\left(x_{i}\right)+p_{K} f\left(x_{K}\right)$
Knowing that $\sum_{i=1}^{K-1} q_{i} x_{i}=y_{0}$
$f\left(\left(1-p_{K}\right) \sum_{i=1}^{K-1} q_{i} x_{i}+p_{K} x_{K}\right) \leq\left(1-p_{K}\right) \sum_{i=1}^{K-1} q_{i} f\left(x_{i}\right)+p_{K} f\left(x_{K}\right)$
And that $q_{i}=\frac{p_{i}}{1-p_{k}}$
$f\left(\left(1-p_{K}\right) \sum_{i=1}^{K-1} \frac{p_{i}}{1-p_{k}} x_{i}+p_{K} x_{K}\right) \leq\left(1-p_{K}\right) \sum_{i=1}^{K-1} q_{i} f\left(x_{i}\right)+p_{K} f\left(x_{K}\right)$
Then:
$f\left(\sum_{i=1}^{K-1} p_{i} x_{i}+p_{K} x_{K}\right) \leq\left(1-p_{K}\right) \sum_{i=1}^{K-1} q_{i} f\left(x_{i}\right)+p_{K} f\left(x_{K}\right)$
Finally the left side is just

$$
f\left(\sum_{i=1}^{K} p_{i} x_{i}\right) \leq\left(1-p_{K}\right) \sum_{i=1}^{K-1} q_{i} f\left(x_{i}\right)+p_{K} f\left(x_{K}\right)
$$

Of course the right side is (since the beginning)
$f\left(\sum_{i=1}^{K} p_{i} x_{i}\right) \leq \sum_{i=1}^{K} p_{i} f\left(x_{i}\right)$ It is proved.

Jensen's inequality allows us to prove a lot of interesting things about the Entropy. Just note that $-\log _{2}()$ is a convex function.

Then, because Jensen's iquequality we have that:
$-\log _{2}\left(\sum_{i=1}^{N} p_{i} x_{i}\right) \leq \sum_{i=1}^{N} p_{i}\left[-\log _{2}\left(x_{i}\right)\right]$
Example:
Lets be a RV uniform distributed on N . Therefore we can write in general:
$H(X)=-\sum_{i=1}^{N} p_{i} \log _{2}\left(p_{i}\right)=\sum_{i=1}^{N} p_{i}\left(-\log _{2}\left(p_{i}\right)\right)$
If RV is uniform then $p_{i}=\frac{1}{N}$
$H_{u}(X)=\sum_{i=1}^{N} \frac{1}{N}\left(-\log _{2}\left(\frac{1}{N}\right)\right)=N * \frac{1}{N}\left(-\log _{2}\left(\frac{1}{N}\right)\right)=\log _{2} N$
We know that uniform distributed RV is the most uncertain. However, can we prove that $H(X) \leq \log _{2} N$ for all RV?

Let's use Jensen inequality to prove this:
First of all let me write:
$\log _{2} N=\left(\log _{2} N\right) * 1=\log _{2} N * \sum_{i=1}^{N} p_{i}=\sum_{i=1}^{N}\left(p_{i} \log _{2} N\right)=-\sum_{i=1}^{N}\left(p_{i} \log _{2} \frac{1}{N}\right)$
Therefore:
$\log _{2} N=-\sum_{i=1}^{N}\left(p_{i} \log _{2} \frac{1}{N}\right)$
I need to prove that $H(X) \stackrel{?}{\leq} \log _{2} N$ for all RV, or what is the same:
$\log _{2} N-H(X) \stackrel{?}{\geq} 0$
Let's write
$\log _{2} N-H(X)=-\sum_{i=1}^{N}\left(p_{i} \log _{2} \frac{1}{N}\right)-\sum_{i=1}^{N}\left(p_{i} \log _{2} \frac{1}{p_{i}}\right)$
$=-\sum_{i=1}^{N}\left(p_{i}\left[\log _{2} \frac{1}{N}+\log _{2} \frac{1}{p_{i}}\right]\right)=-\sum_{i=1}^{N}\left(p_{i}\left[\log _{2} \frac{1}{N p_{i}}\right]\right)$
or
$\log _{2} N-H(X)=\sum_{i=1}^{N}\left(p_{i}\left[-\log _{2} \frac{1}{N p_{i}}\right]\right)$
Because Jensen's inequality we can expand the right side to be:
$\log _{2} N-H(X)=\sum_{i=1}^{N}\left(p_{i}\left[-\log _{2} \frac{1}{N p_{i}}\right]\right) \geq-\log _{2}\left(\sum_{i=1}^{N}\left(p_{i} \frac{1}{N p_{i}}\right)\right)$
$=-\log _{2}\left(\sum_{i=1}^{N}\left(\frac{1}{N}\right)\right)=-\log _{2}\left(N \frac{1}{N}\right)=0$
Therefore:
$\log _{2} N-H(X) \geq 0$
Other play (just my ideas here):
Because Jensen's inequality we can expand to the left as:
$-\log _{2}\left(\sum_{i=1}^{N} p_{i} p_{i}\right) \leq \sum_{i=1}^{N} p_{i}\left(-\log _{2}\left(p_{i}\right)\right)=H(X)$
$-\log _{2}\left(\sum_{i=1}^{N} p_{i}{ }^{2}\right) \leq \sum_{i=1}^{N} p_{i}\left(-\log _{2}\left(p_{i}\right)\right)=H(X)$
Therefore, including last demonstration upper limit of the Entropy:
$-\log _{2}\left(\sum_{i=1}^{N} p_{i}{ }^{2}\right) \leq H(X) \leq \log _{2} N$
Therefore if $p_{i}=\frac{1}{N}$ (uniformly distributed)
$-\log _{2}\left(\sum_{i=1}^{N} \frac{1}{N^{2}}\right) \leq H(X) \leq \log _{2} N$
$-\log _{2}\left(N \frac{1}{N^{2}}\right) \leq H(X) \leq \log _{2} N$
$\log _{2}(N) \leq H(X) \leq \log _{2} N$

DATA COMPRESSION

We have two types of data compression: lossless and lossy.
Lossy data compression has two steps: Quantization and lossless compression.

ENCODER

Given a symbol, we define a code for each symbol.

- Non-singular code. If $x_{i} \neq x_{j} \Rightarrow C\left(x_{i}\right) \neq C\left(x_{j}\right)$
- Uniquely decodable. If $C\left(x_{1} x_{2} \ldots x_{n}\right)=C\left(x_{1}\right) C\left(x_{2}\right) \ldots . . C\left(x_{n}\right)$ or

$$
C\left(x_{1}\right) C\left(x_{2}\right) \ldots . . C\left(x_{n}\right) \neq C\left(y_{1}\right) C\left(y_{2}\right) \ldots . . C\left(y_{n}\right)
$$

- Prefix code: No codeword is a prefix of another codeword. This is also called instantaneous coding.

Definition: length of codeword. $l_{i}=\operatorname{length}\left(C\left(x_{i}\right)\right)$
Definition: probability of a symbol $p_{i}=\operatorname{prob}\left(x_{i}\right)$
Definition: Avg. bits per symbol $L=\sum p_{i} l_{i}=R$ (Average Bit Rate, bits per symbol)

KRAFT INEQUALITY

For any instantaneous code over an alphabet of size D and lengths $l_{1}, l_{2} \ldots l_{m}$ next inequality holds:
$\sum_{i=1}^{N} D^{l_{i}} \leq 1$
PROOF:
Let be $l_{\max }=\max \left(l_{1}, l_{2} \ldots l_{N}\right)$. Consider all branch at level $l_{\max }$. At other levels, each branch has $D^{l_{\max }-l_{i}}$ possible descendants leaves. (descendant defined as leaves to the right of the actual branch level.)

For example, in a binary code $(D=2)$, if $l_{\max }=3$; at level 2 each branch has $2^{3-2}=2$ descendants leaves. at level 1 each branch has $2^{3-1}=4$ descendants leaves. At level 3 each branch has one descendant leaf.

Each codeword branch (next to a leaf, in bold at the figure) have only a descendant leaf, because is a prefix code; hence, each codeword is not a prefix of any other.

The sum of all codeword branches (black nodes) is less than the sum of all branches at level 3 (all nodes) which is $2^{I \max }$. Therefore:
black node $_{\text {level1 }}(0)+$ black node $_{\text {level2 }}(1,0)+$ black node $_{\text {level3 }}(1,1,0)+$ black node $_{\text {level3 }}(1,1,1) \leq \sum_{\text {level } 3}$ nodes Each branch has descendant leaves depending on its level, therefore
$2^{l_{\max }-1}+2^{I_{\max }-2}+2^{l_{\max }-3}+2^{I_{\text {max }}-3} \leq 2^{l_{\max }}$
$\sum_{i=1}^{N} D^{l_{\max }-l_{i}} \leq D^{l_{\text {max }}}$
$\sum_{i=1}^{N} D^{l_{\text {max }}} D^{-l_{i}} \leq D^{l_{\text {max }}}$
$D^{l_{\max }} \sum_{i=1}^{N} D^{-l_{i}} \leq D^{l_{\max }}$
$\sum_{i=1}^{N} D^{-l_{i}} \leq 1$ the proof.
MINIMIZATION OF BIT RATE, OR EXPECTED LENGTH.
For binary codes we have:
$L=\sum_{i=1}^{N} p_{i} l_{i}=R$ and we know this holds $\sum_{i=1}^{N} 2^{-l_{i}} \leq 1$
We want to minimize L. We will use the Lagrange multiplier method.
In that method we need to minimize $f(x)$ with a constrain $g(x)=0$
$J\left(l_{1}, \ldots l_{N}\right)=\sum_{i=1}^{N} p_{i} l_{i}+\lambda\left[\sum_{i=1}^{N} 2^{-l_{i}}-1\right]$
The minimum of this function is also the minimum of $L=\sum_{i=1}^{N} p_{i} l_{i}=R$. Therefore lets derivate to find the minimum.

$$
\begin{aligned}
& \frac{\partial J\left(l_{1}, \ldots l_{N}\right)}{\partial l_{i}}=\frac{\partial\left(\sum_{i=1}^{N} p_{i} l_{i}+\lambda\left[\sum_{i=1}^{N} 2^{-l_{i}}-1\right]\right)}{\partial l_{i}} \\
& =\frac{\partial\left(\sum_{i=1}^{N} p_{i} l_{i}\right)}{\partial l_{i}}+\lambda \frac{\partial\left(\left[\sum_{i=1}^{N} 2^{-l_{i}}-1\right]\right)}{\partial l_{i}}=p_{i}-\lambda \frac{\partial\left(2^{-l_{i}}\right)}{\partial l_{i}}=p_{i}+\lambda(-1) 2^{-l_{i}} \ln 2
\end{aligned}
$$

We equate this to zero and solve for l_{i}
$0=p_{i}+\lambda(-1) 2^{-l_{i}} \ln 2$

$$
2^{-t_{i}}=\frac{p_{i}}{\lambda \ln 2}
$$

Plugging this value at the constrain equation we have
$\sum_{i=1}^{N} 2^{-l_{i}}-1=0 \Leftrightarrow \sum_{i=1}^{N} \frac{p_{i}}{\lambda \ln 2}-1=0$
Solving for λ
$\frac{1}{\lambda \ln 2} \sum_{i=1}^{N} p_{i}=1$ and because $\sum_{i=1}^{N} p_{i}=1$ we have
$\lambda=\frac{1}{\ln 2}$
Pluggin this value of λ in the derivate equation to solve for l_{i}
$0=p_{i}+\lambda(-1) 2^{-l_{i}} \ln 2$
$0=p_{i}+\frac{1}{\ln 2}(-1) 2^{-l_{i}} \ln 2$
$2^{-l_{i}}=p_{i}$
$-l_{i}=\log _{2} p_{i}$ or $l_{i}=\log _{2} \frac{1}{p_{i}}$
Finally we plug this value to find the minimum of L
$L_{\text {min }}=\left.\sum_{i=1}^{N} p_{i} l_{i}\right|_{l_{i}=\log _{2} \frac{1}{p_{i}}}=R_{\text {min }}$
$L_{\text {min }}=R_{\text {min }}=\sum_{i=1}^{N} p_{i} \log _{2} \frac{1}{p_{i}}=H(X)$
The minimum average length of bit rate is the Entropy itself.

EXAM POSSIBLE QUESTIONS

1. Find all possible relations between Information and Entropy.
2. Prove Jensen's inequality
3. Prove $H(X) \leq \log _{2} N$ for all Random Variables
4. Find the theoretical minimum for Entropy.
5. Prove Kraft Inequality
6. Find the minimum average bit rate for instantaneous coding.
7. Find the minimum average bit rate for instantaneous coding using Jensen's inequality.
8. What is the implementation of the Shannon codeing?
9. What is the implementation of Huffman coding?
10. Find the bounds of the average bit rate for Vector coding

New Questions
11. Prove that the Shannon Coding agree with Kraft Inequality.

EOD

