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EE7790 Project for MEE:  
Advanced Image Processing and Computer Vision 

CHAPTER 1 
 
Entropy 
Measures the uncertainty of a process 
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Joint Entropy 
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Conditional Entropy 
Means of additional uncertainty 
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Operating 
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Meaning: the uncertainty of X given Y, is the Uncertainty of both minus the uncertainty of Y. (Graphically is 
the left side moon-shape) 
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Similarly: 
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Because ),(),( XYHYXH   we have that: 
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Rearranging 

)/()()/()( XYHYHYXHXH  ),( YXI  is the intersection, or mutual Information between both 
RV’s 

 
From last equation we have 
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From the previous one we have 
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),()()(),( YXIXHYHYXH   (The sum of both minus the intersection) 
 
Information 
The Information is defined as  
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We can also find the formula of Information from  

)/()(),( YXHXHYXI   
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Let’s do an exercise: 
Let’s be two random variables, each of them can have these values  dcba ,,,  
 

  x=  
  a b c d  

y= a 1/8 1/16 1/32 1/32 p(y=a)=1/4
b 1/16 1/8 1/32 1/32 p(y=b)=1/4
c 1/16 1/16 1/16 1/16 p(y=c)=1/4
d 1/4 0 0 0 p(y=d)=1/4

  p(x=a)=1/2 p(x=b)= 1/4 p(x=c)= 1/8 p(x=d)=1/8  
 
Joint Probability. We know that 8/1),(  ayaxp  etc. 
Marginal Probability. 
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Conditional Probability. 
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Entropy 
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1.62575.1375.3)(),()/(  XHYXHXYH  
 
Information 
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Other formulas we can confirm: 
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Jensen’s Inequality 
 
CONVEX FUNCTIONS 
A function is said to be convex if  

)()1()())1(( 2121 xfxfxxf    like next figure 
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f(lambd*x1+(1-lambd)x2)

lambd*f(x1)+(1-lambd)f(x2)

 
LEMMA:  
If a function is convex, this holds: 
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Jensen’s Inequality is this equation extended to N points 
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Let’s prove this by mathematical induction. 
 
PROOF OF JENSEN’S INEQUALITY: 
We know that this is true for N=2, as it is shown in the figure above. 
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Lets suppose it is true for N=K-1. 

 















 1

1

1

1

K

i
ii

K

i
ii xfpxpf  we have to assume that 1

1

1






K

i
ip  

 
Lets study for N=K 
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we can decompose the right side into 
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To apply the properties of K-1, we have to normalize the probability from 1 to K-1 to be one: 
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Looking at the left side term, and from the formula K-1 rewritten here… 
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Remember that for N=2 we have 
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Finally the left side is just 
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Of course the right side is (since the beginning) 
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 It is proved. 

 
Jensen’s inequality allows us to prove a lot of interesting things about the Entropy. Just note that ()log2  is a 
convex function. 
 
Then, because Jensen’s iquequality we have that: 
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Example: 
Lets be a RV uniform distributed on N. Therefore we can write in general: 
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We know that uniform distributed RV is the most uncertain. However, can we prove that NXH 2log)(   for all 
RV? 
 
Let’s use Jensen inequality to prove this: 
First of all let me write: 
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Because Jensen’s inequality we can expand the right side to be: 
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Therefore: 
0)(log2  XHN  

 
Other play (just my ideas here): 
Because Jensen’s inequality we can expand to the left as: 
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Therefore, including last demonstration upper limit of the Entropy: 
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DATA COMPRESSION 
 
We have two types of data compression: lossless and lossy. 
Lossy data compression has two steps: Quantization and lossless compression. 
 
ENCODER 
Given a symbol, we define a code for each symbol. 

 Non-singular code. If    jiji xCxCxx   

 Uniquely decodable. If         nn xCxCxCxxxC ......... 2121   or 

           nn yCyCyCxCxCxC .......... 2121   

 Prefix code: No codeword is a prefix of another codeword. This is also called instantaneous coding. 
 
Definition: length of codeword. ))(( ii xClengthl   

Definition: probability of a symbol )( ii xprobp   

Definition: Avg. bits per symbol RlpL ii    (Average Bit Rate, bits per symbol) 

 
KRAFT INEQUALITY 
For any instantaneous code over an alphabet of size D and lengths mlll ...., 21  next inequality holds: 

1
1




N

i

liD  

PROOF: 
Let be )....,max( 21max Nllll  . Consider all branch at level maxl . At other levels, each branch has illD max  possible 

descendants leaves. (descendant defined as leaves to the right of the actual branch level.) 
 
For example, in a binary code (D=2), if 3max l ; at level 2 each branch has 22 23   descendants leaves. at level 

1 each branch has 42 13   descendants leaves. At level 3 each branch has one descendant leaf. 
 

 
 
Each codeword branch (next to a leaf, in bold at the figure) have only a descendant leaf, because is a prefix 
code; hence, each codeword is not a prefix of any other.  

Level 1   Level 2   Level 3 
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The sum of all codeword branches (black nodes) is less than the sum of all branches at level 3 (all nodes) which 
is 2lmax. Therefore: 


3

3321 )1,1,1()0,1,1()0,1()0(
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levellevellevellevel nodesnodeblacknodeblacknodeblacknodeblack Each branch has 

descendant leaves depending on its level, therefore 
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MINIMIZATION OF BIT RATE, OR EXPECTED LENGTH. 
For binary codes we have: 
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We want to minimize L. We will use the Lagrange multiplier method. 
In that method we need to minimize )(xf  with a constrain 0)( xg  
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We equate this to zero and solve for il  
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Plugging this value at the constrain equation we have 
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The minimum average length of bit rate is the Entropy itself. 
 
EXAM POSSIBLE QUESTIONS 
 

1. Find all possible relations between Information and Entropy. 
2. Prove Jensen’s inequality 
3. Prove NXH 2log)(   for all Random Variables 
4. Find the theoretical minimum for Entropy. 
5. Prove Kraft Inequality 
6. Find the minimum average bit rate for instantaneous coding. 
7. Find the minimum average bit rate for instantaneous coding using Jensen’s inequality. 
8. What is the implementation of the Shannon codeing? 
9. What is the implementation of Huffman coding? 
10. Find the bounds of the average bit rate for Vector coding 
New Questions 
11. Prove that the Shannon Coding agree with Kraft Inequality. 
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