Chapter 8 Wavelet Transform (WT) for Image Coding

- Wave vs. Wavelet
 - Figure 8.1

- Wave: Does not have compact support (extends to infinity)
- Transient signal (Anomaly, burst) : have compact support (non-zero only in a short interval)
- Many image features (e.g., edges) highly localized in spatial position.

Non-Stationary Signal Analysis

- Stationary signal:
 - Properties not evolve in time
 - Fourier transform (FT) is suitable
- Non-Stationary signal:
 - Properties evolve in time
 - Time-Frequency Analysis
 - 2-D time-frequency space (can be derived from Figure 8.1)
 - Started with Gabor's windowed FT
 - short-time Fourier transform (STFT)
 - Another approach: WT

STFT vs. WT

- STFT:
 - Resolution in time and frequency cannot be arbitrarily small, due to Heisenberg inequality:

 $\Delta t \cdot \Delta f \ge 1/(4\pi)$

- Once window is chosen: Δf and Δt are fixed
- Meaning anomaly (burst) and trend cannot be analyzed with good resolution simultaneously

STFT

• WT:

- Constant relative bandwidth (const. Q):
 - $\Delta f / f = constant$
- Meaning:
 - $\Delta t \downarrow$ as $\Delta f \uparrow (f \uparrow)$, and $\Delta f \downarrow$ as $f \downarrow$
 - as f[↑], high time
 resolution obtained
 - as $f \downarrow$, high freq. resolution obtained

5

 Figure 8.3 Constant bandwidth analysis (for FT) and relative constant bandwidth analysis (for WT)

Example

 A two tone bursts corrupted by random noise

• FT: not easy to be interpreted, in particular, phase spectrum

 Implementation of a bandpass filter bank

8

 $\sum_{\forall i} H_i(S) = 1 \implies \sum_{\forall i} g_i(x) = f(x)$

 $H_3(s)$

0

0.1

- Smooth bandpass filters
 - impulse responses

0.2

(b)

0.3

0.4

0.5 9

transfer functions

Example

 Smooth bandpass filter bank output

 $g_1(x)$ $_{g_2(x)}$ m Mm MMM MMM mm mm 8300 Mannan Mannan Mannan x -

 Original signal and corrupted signal

CS 4670/7670 Digital Image Com

WT: Unification of Several Techniques

- Filter Bank Analysis
- Pyramid Coding
- Subband Coding

Three Types of WT

- CWT (Continuous WT)
- Wavelet series expansion
- DWT (Discrete WT)

Discrete WT

DWT

- Most closely resembles unitary transforms
- Most useful in image compression
- Given a set of orthonormal basis functions, DWT acts just like unitary transform
- Orthonormal wavelets with compact support (by Daubechies):

$${}_{r}\psi(x) = \{2^{j/2}_{r}\psi(2^{j}x-k)\}$$

- $\psi(x)$:mother wavelet
- *j,k*: integers
- compact support: [0,2r-1]
- shift: k
- dilation (scaling): 2^{j}
- N-point signal $\implies N$ coefficients
 - $N \times N$ image $\implies N^2$ coefficients

HW #5: Ex. 8-1 CS 4670/7670 Digital Image Compression

Block Diagram

Two level (1-D) wavelet decomposition and reconstruction

2-D decomposition is realized by filtering along horizontal direction, then along vertical direction.

Image Decomposition

Scale 1

LL ₁	HL_{I}
LH ₁	HH ₁

- 4 subbands: LL₁,HL₁,LH₁,HH₁
- Each coeff. ↔ a 2*2 area (*not exactly*) in the original image
- Low frequencies: $0 < |\omega| < \pi/2$
- High frequencies: $\pi/2 < \omega < \pi$

Image Decomposition

- Scale 2
 - 4 subbands: LL_2 , HL_2 , LH_2 , HH_2
 - Each coeff. ↔ a 2*2 area in Scale 1 image
 - **Low Frequency:** $0 < |\omega| < \pi/4$
 - High frequencies: $\pi/4 < \omega < \pi/2$

LL ₂	HL ₂	
		HL_1
LH ₂	HH ₂	
LH ₁		HH_{I}

16

Image Decomposition

LL_2	HL_2	HL_1
LH ₂	HH ₂	
LI	H ₁	HH

Image Decomposition

- Parent vs. Children
- Descendants: corresponding coeff. at finer scales
- Ancestors: corresponding coeff. at coarser scales

Parent-children dependencies of subbands: arrow points from the subband of parents to the subband of children.

Image Decomposition

- Feature 1:
 - Energy distribution similar to other TC: concentrated in low frequencies
- Feature 2:
 - Spatial self-similarity across subbands

The scanning order of the subbands for encoding the significance map.

- Differences from DCT Technique
 - In conventional TC
 - Anomaly (edge) ↔ many nonzero coeff.

insignificant energy

- TC allocates too many bits to "trend", few bits left to "anomalies"
- Problem at Very Low Bit-rate Coding : block artifacts
- DWT
 - Trends & anomalies information available
 - Major difficulty: fine detail coefficients associated with anomalies the largest no. of coeff.
 - Problem: how to efficiently represent *position* information?

EZW Image Coding

Embedded Coding

- Having all lower bit rate codes of the same image embedded at the beginning of the bit stream
- Bits are generated in order of importance
 - Bit plane coding, coarser scale to finer scale
- Encoder can terminate encoding at any point, allowing a target rate to be met exactly
- Suitable for applications with scalability

EZW Image Coding

Zerotree of DWT Coefficients

- Significance map: binary decision as to a pixel = 0 or not, w.r.t. a threshold T(T is decreased by half in each scan)
- Total encoding cost = cost of encoding significance map + cost of encoding nonzero values

An element of zerotree:

- A coeff.: itself and <u>all</u> of its descendants are insignificant w.r.t. threshold T
- Zerotree root: An element of zerotree, & not a descendant of a zero element at a coarser scale
- Isolated zero: Insignificant, but has some significant descendant
- Significance map can be efficiently represented as a string of four symbols:
 - * Zerotree root
- * Positive significant coeff. CS 4670/7670 Digital Image Compression

- * Isolated zero
- * Negative significant coeff.

EZW Image Coding

Comparison

- DCT coding
 - Run-length (RLC) [within the same scale]
 - End of block (EOB) [within the same scale]
- EZW coding
 - More efficient due to using self-similarity across different scales
 - Bit plane coder for scalability and efficient exploitation of selfsimilarity
 - Higher quality of reconstructed image:
 - Due to more efficient in position encoding
 - No possibility that a significant coeff. be obscured by a statistical energy measure
 - Experimental results reported: "Barbara" at very low bit rate
 - 2.4 dB better for same bit rate and 0.12 bpp savings for the same PSNR