Ee572039p1c2

Wednesday, April 04, 2012

Todays Topics:

- Review of convolution from last class and cool trick.
- · Review of DTFT.
 - o Continuous Frequency property.
 - Replica of Spectrum due to the sampling in time.
 - o Radians per sample instead radians per second, in the frequency domain.
- Review of Nyquist Sampling theorem.
- The DFT
 - o Computational version of the DTFT.
 - Linear transformation of n points in time to n points in frequency.
 - \circ Concept of W_n.
 - \circ The F_n matrix and its application for the DFT.
 - o Example of DFT using the F matrix.
 - o The effect of zero padding.
 - o Frequency resolution in the DFT.

Convolution trick:

Involution trick:

$$x[n] = [1,2,3,4,5,5]$$
 $h[n] = [1,2,-1]$

$$1 2 3 4 5 5$$

$$2 4 6 8 10 10$$

$$1 2 3 4 5 5$$

$$1 4 6 8 10 11 5 - J$$
Same as computed in last last

With Matlab:

- · Review of DTFT.
 - o Continuous Frequency property.
 - o Replica of Spectrum due to the sampling in time.
 - o Radians per sample instead radians per second, in the frequency domain.

• The DFT

- o Computational version of the DTFT.
- Linear transformation of n points in time to n points in frequency.
- Concept of W_n.
- \circ The F_n matrix and its application for the DFT.
- o Example of DFT using the F matrix.

Frequency resolution in DFT.