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ANALOG COMMUNICATION SYSTEMS
CLASS 1
1 INTRODUCTION

1.1 COMMUNICATION SYSTEM
· Source, Input transducer, base band signal or message signal, transmitter, channel, receiver, output transducer, destination.
· Linear distortion, nonlinear distortion due to attenuations and phase shift of the different frequency components of the signal thru the channel.
· Noise, contaminates the signal thru the channel
· SNR signal to noise ratio. Is a ratio of power of signal to power of noise.
1.2 ANALOG AND DIGITAL MESSAGES
· Messages constructed with an infinite or finite number of symbols.

1.2.1 Noise Immunity of Digital Signals

1.2.2 Viability of Regenerative Repeaters in Digital Communication

1.2.3 A/D Conversion

1.3 SIGNAL TO NOISE RATIO, CHANNEL B BANDWIDTH AND THE RATE OF COMMUNICATION
· B or bandwidth of a channel is the range of frequencies that it can transmit with reasonable fidelity.
· Signal Power S plays a dual role in information transmission. First is related to the quality of transmission. Increasing S reduces the effect of Noise. Secondly is that B and S can be exchanged. (Explain example of page 8 in Book).
· 
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1.4 MODULATION 
· To transmit a base band signal we modify the signal to be suitable for direct transmission over a given channel. This conversion is known as modulation.
· A carrier is used to modulate the signal, is a sinusoid of high frequency. We modify the carrier amplitude, frequency or phase in proportion to the base band signal. AM FM or PM
· At the receiver the modulated signal must pass thru a reverse process called demodulation.
1.4.1 Ease of Radiation.

· To radiate efficiently, an antenna has to be 1/10 of the wavelength of the signal radiated. For example, a signal of 100 to 3 kHz has a wavelength of 
[image: image2.wmf]f

T

c

l

l

=

=

then 
[image: image3.wmf]f

c

=

l

 is 3*106 to 100,000 meters respectively. We need antennas of 300,000 to 10,000 meters.
· 1Mhz carrier has a λ of 300 meters, so an efficient antenna is 30m
1.4.2 Simultaneous Transmission of Several Signals

· FDM: Frequency division multiplexing

· TDM: Time division multiplexing
1.5 Randomness, Redundancy and Coding.

2 INTRODUCTION TO SIGNALS
· Signal: set of information or data. Mostly is a function of time.
· System: entity that processes a set of signals.
2.1 SIZE OF A SIGNAL
2.1.1 Signal Energy

Lets be g(t) a real signal. The Energy is defined as:
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for a complex valued signal
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A necessary condition for the energy to be finite is that the signal amplitude → 0 as 
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2.1.2 Signal Power
The time average of the energy which is the average power.
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EXAMPLE 2.1 from the book.
Determine the suitable measures of the signals in Figure 2.3
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In the first case is a Energy Signal and the energy can be calculated by the formula


[image: image10.wmf]ò

ò

ò

¥

-

-

¥

¥

-

÷

÷

ø

ö

ç

ç

è

æ

+

=

=

0

2

2

0

1

2

2

2

2

)

(

dt

e

dt

dt

t

g

E

t

g


[image: image11.wmf]ò

ò

¥

-

-

+

=

0

0

1

4

4

dt

e

dt

t


[image: image12.wmf]¥

-

-

-

+

=

0

0

1

1

4

4

t

e

t



[image: image13.wmf])

(

1

4

))

1

(

0

(

4

0

-

¥

-

-

-

+

-

-

=

e

e



 EMBED Equation.3  [image: image14.wmf]8
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In the second case is a Power Signal and the power can be calculated just in one period.
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EXAMPLE 2.2 from the book

Determine the power and the RMS value of 
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In this case lets first calculate the Power of 
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 Then 
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The other case are easy if we remember that 
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Therefore we have two integrals. The second one is zero because we integrate in two periods a cosine:
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Be very careful, the power of two signals is not always the sum of powers of each signal. This only occurs if the signals are ORTHOGONAL.
2.2 CLASIFICATION OF SIGNALS
2.2.1 Continuous Time and Discrete time signals
continuous time signal is specified for every value of time

discrete time signal is specified for discrete values of time.

2.2.2 Analog and Digital Signals

Analog signal can take any amplitude value.
Digital signal can take only a quantized amplitude values.
2.2.3 Periodic and Aperiodic Signals

A signal g(t) is said to be periodic if for some positive constant T0
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Where the constant T0 is the period. The smallest T0 is the fundamental period. Any signal that does not satisfied this is called aperiodic.

A periodic signal can be generated by periodic extension of any segment of the signal of duration one period.
2.2.4 Energy and Power Signals

A signal with finite energy is called an energy signal. g(t) is an energy signal if
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A signal with finite power is a power signal if:
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2.2.5 Deterministic and Random Signals
A signal whose physical description is known completely is a deterministic signal. If we know it only in terms of probabilistic description is a random signal.
2.3 SOME USEFUL SIGNAL OPERATIONS
2.3.1 Time shifting
Lets be g(t) a signal and 
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2.3.2 Time Scaling
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2.3.3 Time Inversion
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EXAMPLE 2.3 of the Book
Figure 2.10 show the signals 
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EXAMPLE 2.4 of the Book
Figure 2.12 shows the signal 
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Sketch the time inversion 
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2.4 UNIT IMPULSE FUNCTION
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Multiplication of a Function by an impulse
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Delayed impulse
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Sampling property of the Unit Impulse Function
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Sampling or shifting property
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Unit Step Function
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We can make any function a causal function by multiplying if for the Unit Step function.
CLASS 2
2.5 SIGNALS AND VECTORS
2.5.1 Component of a Vector
Vector g can be expressed in terms of vector x as
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 where cx is the component of g along the vector x and e is the error vector.
We can approximate g to x as 
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The inner product between two vectors is:
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 Where theta is the angle between both vectors.
From this, we can derive that
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For the error to be minimum, the error vector has to be perpendicular to the vector x. In this case the length component of g along x is 
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 Multiplying both sides by the length of x and rearranging
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Note that c is zero if both vectors are orthogonal or perpendicular. That happens if the inner product or scalar product is zero.
2.5.2 Component of a signal
We can do similar study for two signals and get that signal g(t) can be approximated by signal x(t) in the interval (t1, t2) by the equation
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When c is zero both signals are orthogonal.

EXAMPLE 2.5

For the square signal find the component g(t) of the form 
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In this case we just need to calculate the formula with the data given.
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In this case 
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Then: 
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Then, the best approximation is
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2.5.3 Orthogonality in Complex Signals
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Energy of the Sum of Orthogonal Signals


[image: image68.wmf]y

x

z

E

E

E

+

=

 demonstration in the book.
2.6 SIGNAL COMPARISON: CORRELATION
Two vectors are similar if the component of g on x is large. But this c should be “normalized” to be independent of the length of both vectors.
We clearly can see that the cosθ goes from 0 to 1 whatever the length of the vectors.
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 This is called the correlation coefficient.
For signals
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EXAMPLE 2.6

Find the correlation coefficient between the pulse 
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First we have to find the energies of each signal
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Using equation 
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 we can find the correlation coefficients
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2.6.2 Correlation Functions
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2.7 SIGNAL REPRESENTATION BY ORTHOGONAL SIGNAL SET
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This is not longer an approximation when the vectors are mutually orthogonal in a three dimensional vector space. Because the base is complete. There is not any dimension left.
A set of vectors 
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Where


[image: image99.wmf]3

,

2

,

1

*

2

=

=

i

c

i

i

i

x

x

g


2.7.2 Orthogonal Signal Space
We define orthogonality of a signal set 
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If the energies En are 1 for all n the set is normalized and is called an orthonormal set.
We can approximate a signal over the interval t1 to t2 by a set of N mutually orthogonal signals by:
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The error is minimized if
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If the orthogonal set is complete the error energy goes to zero and the representation is not longer an approximation but an equality.
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This expression is called the generalized Fourier Series.

Parseval’s Theorem: The energy of a signal can be calculated as the sum of the energy of the components multiplied by the component squared.
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2.8 TRIGONOMETRIC FOURIER SERIES

This set is orthogonal
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This is because
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The coefficients are calculated as
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The integral of the denominator is 
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Compact trigonometric Fourier Series
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Therefore
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Fourier Spectrum
Compact Trigonometric Fourier Series can be plot over the frequency with amplitudes 
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. This is called the spectrum of g(t)
Existence of the Fourier Series: Dirichlet Conditions
1.- For the Fourier Series to exist 
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 should be finite. This only occurs if the function is integrable over the period. This is the weak condition
2.- The function has to be a finite number of minima and maxima over one period and a finite number of finite discontinuities.
EXAMPLE 2.8 Find the Compact FS for the periodic square wave unipolar [0 to 1]
Done theoretically only
2.9 EXPONENTIAL FOURIER SERIES
The set of exponentials 
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Moreover this is a complete set. Therefore any signal g(t) can be expressed over an interval T0 as an exponential Fourier Series
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Where
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There is a very close connection with the trigonometric series, see page 54 for more reading.

2.9.1 Exponential Fourier Spectra

Since Dn is complex in general, we need two plots, one with the magnitude of Dn and another with the phase.
For real periodic signals the twin coefficients Dn and D-n are conjugates and 
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EXAMPLE 2.11 Find the Exponential FS for the periodic square wave unipolar.
In this case we have
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Parseval’s Theorem
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Practice Problems: 2.1-8, 2.5-2, 2.6-1, 2.8-1, 2.8-4, 2.8-5
CLASS 3
3 ANALYSIS AND TRANSMISSION OF SIGNALS
3.1 APERIODIC SIGNAL REPRESENTATION BY FOURIER INTEGRAL
An aperiodic signal can be represented as 
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This is the called Fourier Integral.

We call G(ω) the Direct Fourier Transform of g(t) and g(t) the inverse Fourier Transform of G(ω).
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It is helpful to keep in mind that the Fourier Integral is of the nature of a Fourier Series with fundamental frequency ∆ω approaching zero.

We can plot then the phase and the Magnitude of the signal in frequency domain.
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Conjugate Symmetry Property
If g(t) is a real function of t then
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The magnitude is an even function and the phase is an odd function of 
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EXAMPLE 3.1 Find the FT of the signal 
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Existence of the Fourier Transform
The existence of the Fourier Transform is assured for any g(t) satisfying the Dirichlet conditions. Remember that 
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 If we take a look at the Fourier Transform 
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because the magnitude of the exponential is 1.

Linearity of the Fourier Transform

The FT is linear if 
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Exam tips:

Fourier Transform Problem of a pulse.
Power of a product of cosines

Component of a signal
Series coefficients of a signal over a period T0
Exponential Fourier Series of a function
3.2 TRANSFORMS OF SOME USEFUL FUNCTIONS

Unit Gate Function

Rect(x) and rect(x/t)
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Interpolation Function Sinc

The function sinx/x is the sine over argument function denoted by sinc(x). Other authors define it as 
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 plays an important role in signal processing. It is also known as the filtering of interpolating function.
We define it as
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-We can see that sinc is an even function of x

-Sinc is zero when the sin is zero except at x=0 where its value is one. Therefore is zero at pi multiples.
- Sinc is the product of an oscilating signal and a monotonically decreasing function 1/x. Therefore it exhibits sinusoidal oscillations of period 2pi with amplitude decreasing continuously as 1/x.
EXAMPLE 3.2 Find the Fourier Transform of 
[image: image169.wmf])

/

(

)

(

t

t

rect

t

g

=


Bandwidth of 
[image: image170.wmf]÷

ø

ö

ç

è

æ

t

t

rect

.
The spectrum of this window goes to zero at 
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 Much of the spectrum is located at the first lobe. We can consider 
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 rads per second, the highest significant frequency in the spectrum. 
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3.3 SOME PROPERTIES OF THE FOURIER TRANSFORM
Time-Frequency duality.
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It is almost a symmetric transform the FT and the IFT
3.3.1 Symmetry of Direct and Inverse Transform Operations – Time Frequency Duality
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This will be explained later
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3.3.2 Symmetry Property
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3.3.3 Scaling Property
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Give an explanation of this. (Long signal in time, short spectrum.
Read: Significance of… and Reciprocity of signal duration and its bandwidth)
3.3.4 Time Shifting Property
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Physical explanation of linear phase
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3.3.5 Frequency Shifting Property
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Application of modulation: FDM
EXAMPLE 3.3 Find the Fourier transform of the unit impulse

EXAMPLE 3.4 Find the IFT of the unit impulse in frequency. 
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EXAMPLE 3.5 Find the IFT of 
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EXAMPLE 3.6 Find the FT of the everlasting 
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3.3.6 Convolution
Is defined as the integral
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 EMBED Equation.3  [image: image191.wmf]ò
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[image: image194.wmf])
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3.3.7 Time differentiation and Time integration
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3.4 SIGNAL TRANSMISSION THROUGH A LINEAR SYSTEM

For a LTI continuous time system the input output relationship is given by:
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g is the input signal and h is the impulse response of thesystem. If:
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Where H is the system transfer function. Then
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3.4.1 Signal Distortion during Transmission
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 This equation shows the nature of the modification of the input signal by a system. In polar form
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Therefore
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During the transmission the magnitude of the input signal is modified by the magnitude of the transfer function of the system and the phase is modified by the phase of the transfer system. This is in the frequency domain, that is why this is called the frequency response of the system.
During transmission some frequency components will be boosted, some will be attenuated, and the relative phases of the various components also change. Some frequencies will suffer different phase shifting.
Distortionless transmission
It is said distortionless transmission if the output has the same form as the input, only with a gain or attenuation and a delay. Thus the output has to be
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But 
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Meaning the magnitude response is constant for all frequencies and the phase it is linear function with the frequency.
Intuitive Explanantion of the Distortionless Transmission Conditions.
We need all the components attenuated or boosted the same quantity independent of the fequency, we also need all the components delayed the same quantity. Delaying a component is a shift. But the shift has to be linear with the frequency, because a signal f shifted z is delayed the same quantity as a component 2f shifted 2z.
Line phase delay achieves this same time delay for all frequencies.
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The time delay resulting from the signal transmission through a system is the negative of the slope of the system phase response that is
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is linear all the components are delayed by the same interval td.
The Nature of Distortion in Audio and Video Signals

EXAMPLE 3.16 If 
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 are the input and the output of a RC Low pass filter. Determine the transfer function 
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. For distortionless transmission through this filter, what is the requirement on the bandwidth of 
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if we allow a variation in the amplitude response of 2% and time delay variation of 5%? What is the transmission delay? Find the Output 
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3.5 IDEAL AND PRACTICAL FILTERS

The ideal pass filter is one as the picture 3.28
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This frequency response of the system can be written analitically
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The impulse response of this ideal filter is
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But this signal is not realizable physically. Because this filter is not causal.
If we make this filter causal by
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Now it is physically realizable. And it will be very close to the ideal if td is long enough. This is the price to pay for a perfect filter… make it slower. It is enough for practical purposes to make it 3 or 4 times 
[image: image225.wmf]W
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. For instance a filter is required to handle frequencies up to 20kHz. Then a filter with a time delay of 0.1 ms is good enough.
The cutting of the tail causes some unexpected problems like spectral spread and leakage. This can be partly corrected by truncating h(t) gradually by the use of windows.
Digital Filters

3.6 SIGNAL DISTORTION OVER A COMMUNICATION CHANNEL

Linear Distortion

If the filter is not ideal we can suffer dispertion in time of the signal. This is undesirable in TDM systems.

EXAMPLE 3.17 A low pass filter transfer function is
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Lets apply a pulse.
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Using time shifting properties we have
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Plotting this we can see that there are two echoes of the signal. The dispersion is evident.

Distortion Caused by Channel Nonlinearities.

Will change the bandwidth of the signal so it is not good in FDM. AM is very sussceptible to this kind of distortion, FM is not.

Distortion Caused by Multipath Effects.

Can cause nonlinearities in the system. Can even cancel the output at certain frequencies.

CLASS 4
3.7 SIGNAL ENERGY AND ENERGY SPECTRAL DENSITY

Parseval’s Theorem
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Energy Spectral Density

ESD is defined as
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Then the energy is defined as
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Time Autocorrelation Function and the ESD

The autocorrelation function is defined as
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The autocorrelation is an even function of 
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 if the signal is real
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The ESD is the FT of the correlation. Demonstration at page 122.
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Close appearance of correlation and convolution
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We can see that
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3.8 SIGNAL POWER AND POWER SPECTRAL DENSITY

For a power signal we defined 
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Imagine 
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Then
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We define PSD as
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Time Autocorrelation Function of Power Signals

Is defined as
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For real signals this function is even as the autocorrelation of energy signals.
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For energy signals the ESD is the Fourier transform of the autocorrelation 
[image: image252.wmf])

(

)

(

w

t

y

Ψ

Û

g

. A similar result applies to power signals
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Signal Power Is Its Mean Square Value
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Its RMS is the 
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The Time Autocorrelation of a signal then can be seen as the time mean of 
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Autocorrelation Method a Powerful Tool
For a signal 
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 the ESD is the 
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. This function can be also found by taking the FT of the autocorrelation function. For probabilistic signals we can not calculate the FT, but we can calculate the autocorrelation and the FT of it.
CLASS 5
Energy of Modulated Signals

Let be 
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 a base band signal limited to BHz. The AM signal is
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The spectrum or FT is
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The ESD is 
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 if the spectra is not overlapping then 
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See that the area under  
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 Because the energy is proportional to the area under the ESD then
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CLASS 6
Essential Bandwidth of a Signal

The spectra of most signals extend to infinity. However most of the energy is contained within a certain band Bhz. This B is the essential BW of the signal. For exampple 95% of the energy.
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EXAMPLE 3.19 Verify Parseval’s theorem for the signal 
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EXAMPLE 3.20 Estimate the essential bandwidth in rads/sec for the signal 
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 if the essential band is required to contain 95% of the energy

ESD of the Input and the Output
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Then
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EXAMPLE 3.22  Find the autocorrelation function of the signal 
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 and from it determine the ESD of the signal

Input and Output Power Spectral densities
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PSD of Modulated Signals


[image: image286.wmf]t

t

g

t

0

cos

)

(

)

(

w

j

=



[image: image287.wmf][

]

)

(

)

(

2

1

)

(

0

0

w

w

w

w

w

j

-

+

+

=

g

g

S

S

S

 for 
[image: image288.wmf]B

p

w

2

0

³



[image: image289.wmf]g

P

P

2

1

=

j


EXAMPLE 3.19 

Parseval

EXAMPLE 3.20

ESD and %

EXAMPLE 3.22 

Autocorrelation and ESD

EXAMPLE 3.23

Autocorrelation and PSD
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