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Class 4  

Signal Processing Module (DSP). 

 Laplace Transform. Transfer Function. 

 Analog Filter Design with Zeros and Poles. 

 Digital Filter Design with Zeros and Poles. 
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Laplace Transform. 
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 Working with Differential Equations (DE) is not easy. Laplace 

Transform allows exchange DE for something called Transfer 

Function (TF). The TF gives us a direct expression of 

Input/Output that the DE is not able to. 

 

 Also, it allows us to have an direct relation input/output!! 
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Laplace Transform. 

3 

 The Laplace Domain transforms time signals into vibration 

signals as follows: 

 In time: signal changes with time 

 In frequency: signal is view as its vibration/fequency 

components. 
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Laplace Transform. 

4 

 

 Also, it allows us to have an direct relation input/output!! 

 

 

 

 Aplying Laplace: 

 

 

 

 Now, there are only two variables Y(s) and X(s) 
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Laplace Transform. 
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 Operating, we obtain a Direct Input/Output relationship 

 

 

 

 

 

 

 We could easily implement this in Simulink!!! 

 The multiplier of X(s) is called Transfer Function. 
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Laplace Analisys of Circuits. 
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 Using Laplace we could find the Transfer function at once!! 
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Simulink: Laplace Transform. 
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 Double click on Transfer Fcn to open options as shown below: 

 Simulating: 
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Simulink: Signal Processing. 
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 Last lecture we ended up with a noisy signal as next figure 

shows: 

)602sin(2.0)12sin()( tttx  
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Design of Analog Filter. 
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 Now we have two different tools to analyze an Electrical 

System (Electrical Filter, Electrical Circuit) 

 Differential Equation (time domain). 

 Transfer Function (vibration/frequency domain). 

 

 When an Engineer needs to design an Electrical System to 

perform a particular task, the process is the inverse to analysis. 

 This process is called Synthesis. 

 When designing an analog filter: 

 WE START WITH THE TRANSFER FUNCTION and we 

end with an Electrical Circuit. 
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Simulink: Signal Processing. 
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 We will insert a system that will filter out the ripple. 

 First option is to insert from the continuous library group a 

Transfer Function block. 

 We also add a Mux from Signal Routing library group. 
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Simulink: Signal Processing. 
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 We insert the Transfer Function after the summator and before 

the Mux. 

 The Mux will allow the Scope to show two traces: 

 

 

 

 

 

 

 

 

 Now, hit play and see: 
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Zero Pole Filter Design 
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 Now, lets design a filter that particularly eliminates the signal 

of 60Hz and keep untouched the signal of 1Hz. We do that 

using the Zero-Pole Transfer function 
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Zero Pole Filter Design 
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 When you will study Filter Theory you will learn that the 

roots of the numerator (called zeros) must be s=260j where 

60 is the frequency to eliminate at the output. 
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Zero Pole Filter Design 

14 

 When you will study Filter Theory you will learn that one of 

the roots of the numerator (called zeros) must be sz1=260j 

where 60 is the frequency to eliminate at the output. 

 

 

 

 

 Observation: if you wanted also to kill a frequency of 100HZ 

you must set another zero/root to be sz2=2100j  

 

 Another problem is to set the denominator coefficients. And it 

is more dangerous. Because if you set some values of s to make 

the denominator zero, we explode the system. 
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Zero Pole Filter Design 

15 

 What are the values I must set at the denominator.  

 I cannot set the denominator roots to the frequencies I want to 

amplify or let go untouched, because the system will go 

unstable. 

 

 

 

 

 What I do is set the real part to avoid that singularity. For 

example set it to 300: 
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Zero Pole Filter Design 

16 

 To set the real part properly you will need to learn more about 

analog filter design. We do not have time in this class to 

discuss. 

 

 

 

 Lets test it: 
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Zero Pole Filter Design 

17 

 But the coefficients of the numerator are some of the values of 

the Electrical Components. 

 Remember, for the RC circuit we had: 
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Zero Pole Filter Design 

18 

 But the coefficients of the numerator are some of the values of 

the Electrical Components or amplifier gains. 

 However, we can not have imaginary coefficients, because they 

are component values or amplifier gains that MUST BE REAL. 

 We need to do a mathematical trick to convert imaginary 

numbers into real numbers!! 

 COMPLEX CONJUGATE 

 (a +jb) (a -jb)=a2+b2 eso es debido a que -j2=1 
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Zero Pole Filter Design 

19 

 When studying Filter Theory you will learn that the roots of the 

numerator must be (s-260j) and (s+260j). The use of 

complex conjugated roots is to have real coefficients because: 

 

 

 At the denominator we just set roots (poles)  to. 

 

 

 If you set smaller roots, the output becomes too large. Please 

try other values to check out by yourself  
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Zero Pole Filter Design 

20 

 The final transfer function is. 

 

 

 

 Lets test it: 

 

 

 

 

   360)340(

120,142

360)340(

604
)(

222













ss

s

ss

s
sH



 
    

 
    

  0602
360602)340602(

0
602

360602)340602(

120,142602
)(

2








 jX

jj
jX

jj

j
sY 








 
   jXjXsY 12*1.112

360)340(

120,142
)(  



10/6/2014 EE 1130 21 

Zero Pole Filter Design 

21 

 The final Transfer Function that solve our problem is: 

 

 

 

 Now, we simulate this in Simulink 

 

 

 

 360)340(

142120
)(

2






ss

s
sH

(s+2*pi*60*j)(s-2*pi*60*j)

(s+340)(s+360)

Zero-Pole

Spectrum

Analyzer

Sine Wave1

Sine Wave

Scope

Add1



10/6/2014 EE 1130 22 

Zero Pole Filter Design 
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 Now we hit play and compare input and output in the Scope 
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Zero Pole Filter Design 
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 The simulation shows we did the job 

 Spectrum before the filter 
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Simulink: Signal Processing. 

24 

 The simulation shows we did the job: 

 Spectrum after the filter 
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Simulink: Signal Processing. 
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 We notice the dark trace is completely clean of noise. We could 

add another trace to the scope and see both signals separated: 
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Implementation 
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 Once the simulation shows we solved the problem, we need to 

implement the Electrical Circuit. 

 In order to do that, we need to modify the Transfer Function in 

a sum of simpler Transfer Functions of the type: 

 

 

 This is done with Partial Fraction Expansion: 

 

 

 

 Matlab calculate the residues very fast: 
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Implementation 

27 

 Matlab calculate the residues very fast: 
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Implementation 

28 

 One more modification yields: 

 

 

 

 

 

 

 Each term correspond to a RC circuit: 
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Implementation 

29 

 Implementation: 
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Layout 
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 From the Electrical Schematics we build the 

physical layout: 

 We obtain something like: 
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Building and Testing 
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 From the physical layout: 

 we build the  

PCB (Printed Circuit Board) 

 We solder the components. 

 Solder the cables. 

 

 Then we test!!! 
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Final Report 
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 We generate the final report with our findings, to validate that 

the circuit does what we intended it to do. 
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End of Class 


