EE 1130 Freshman Eng. Design for Electrical and Computer Eng. Class 3

Signal Processing Module (DSP).

- Differential Equations.
- Simulink: Differential Equations.
- Design of Electrical Circuits with CircuitLab.

Filter Design.

- Last lecture we generated a EKG (Electrocardiogram) signal with noise. We did that to EMULATE OR MODEL something like a real noisy EKG signal.
- Our next objective is to process (Signal Processing) the generated EKG signal to clean it from the noise.
 - We need knowledge in Digital Filters.
 - But before knowledge in Digital Filters, we need to acquire knowledge in Analog Filters.

- Any Linear Time Invariant system could be modeled as the solution of a differential equation (DE).
- In the case of Low Pass RC filter shown in next figure:

• The Differential Equation is:

$$RC\dot{y} + y = x$$

• Next is an algebraic equation (instant equation).

$$y(t) = 2x(t)$$

• A differential equation has into account velocities!!!

$$K\frac{dy}{dt} + y(t) = 2x(t)$$

• Another way of writing the expression above is:

$$K\dot{y} + y(t) = 2x(t)$$

- The circuit analysis is shown in next figure:
 - x or x(t) is the input voltage, also called v_{in} .
 - y or y(t) is the output voltage, also called v_{out} .
 - Our objective is to find a mathematical expression that links *y*(*t*) with *x*(*t*). Also called input-output relation or function.

- First of all, we need to know the voltage current relation of each component:
 - Resistor: the relation IV is called Ohm Law!!
 - $v_1(t)$ is the voltage at the left side of R
 - $v_2(t)$ is the voltage at the right side of R
 - $i_R(t)$ is the current flow from left to right side of R. Current is measured in Amperes.
 - The value of the resistor is R (measured in Ohms).
 - Voltage is measured in Volts.
 - Ohms law: $i_R(t) = (v_1(t) v_2(t))/R = v_R(t)/R$
 - We define $v_R(t) = v_1(t) v_2(t)$

- Secondly, we need to know the voltage current relation the Capacitor:
 - $v_1(t)$ is the voltage at the upper side of C
 - $v_2(t)$ is the voltage at the lower side of C
 - $i_C(t)$ is the current flow from top to bottom of C. Current is measured in Amperes.

- Voltage is measured in Volts.
- Capacitor stores voltage!!!
 - IV law: $v_1(t) = v_2(t) + \text{accumulation of } i_C(t) / C$
 - $v_1(t) v_2(t) = \text{integral from 0 to } t \text{ of } i_C(t) / C \quad v_C(t) = \frac{1}{C} \int_0^t i_C(t) dt$
 - We define $v_C(t) = v_1(t) v_2(t)$

 $v_2(t)$

• The following expressions are equivalent:

$$v_C(t) = \frac{1}{C} \int_0^t i_C(t) dt$$

$$C\frac{dv_C}{dt} = i_C(t)$$

• The circuit analysis is shown in next figure:

- To obtain input output relation we will use the Kirchoff laws:
 - KVL: voltage delivered = voltage consumed!!

$$x(t) = v_R(t) + v_C(t)$$

• KCL: current entering in a node = current exiting a node!!

$$i_R(t) = i_C(t) + 0$$

• The circuit analysis is s

$$x(t) = v_{R}(t) + v_{C}(t)$$

$$v_{in} = x$$

$$x(t) = \left(C\frac{dy}{dt}\right)R + y(t)$$

$$RC\frac{dy}{dt} + y(t) = x(t)$$

$$RC\dot{y} + y(t) = x(t)$$

Differential Equations. $RC\dot{y} + y = x$

- Where *y* with the dot is the first derivative of *y*(*t*) and *x* is *x*(*t*). *R* and *C* are the values of the Resistor and Capacitor respectively.
- The Differential Equation could be simulated with Simulink.
- However, the Differential Equation must be modified to an Integral Equation, since integrator blocks are more used than derivative blocks.

$$\int (RC\dot{y} + y)dt = \int x\,dt$$

• The integral is linear:

$$RC\int \dot{y} dt + \int y dt = \int x dt$$
$$RCy = \int x dt - \int y dt$$
$$y = \frac{1}{RC} \int (x - y) dt$$
$$y = \int \left(\frac{1}{RC} x - \frac{1}{RC} y\right) dt$$

• The block diagram could be implemented from this equation:

• To insert the Step and Scope blocks we do:

뒢 Computer Vision System...

🙀 Data Acquisition Toolbox 🙀 EDA Simulator Link

🗄 🐻 DSP System Toolbox

Control System Toolbox

5

To Workspace

XY Graph

simout

D

• To insert the Integrator block we do:

• Once all elements in the Model, we make the connections:

• To flip the Gain1 block we type control+I

- Double click on each gain block and change the 1 to 1/(R*C) at the first block and -1/(R*C) at the second.
- Type C=1 and R=1 at the command window to define the variables R and C.

🙀 Function Block Parameters: Gain	×
Gain	
Element-wise gain (y = K.*u) or matrix gain (y = K*u or y = u*K).	
Main Signal Attributes Parameter Attributes	
Gain:	
1/(R*C)	
Multiplication: Element-wise(K.*u)	⊸
Sample time (-1 for inherited):	
-1	
OK Cancel Help A	Apply

• To see both traces in one scope we add the MUX.

• Once all connected, variables defined in command window, we hit play and double click on the scope block to open the scope screen.

• When using sinusoidal inputs the circuit attenuates larger frequencies. In the figures, the frequency is 1/10Hz.

EE 1130

• When using sinusoidal inputs the circuit attenuates larger frequencies. In the figures, the frequency is 1Hz.

• When using sinusoidal inputs the circuit attenuates larger frequencies. In the figures, the frequency is 10Hz.

Simulation of Electrical Circs.

- Electrical technicians are able to simulate Electrical Circuits without knowledge of Differential Equations.
- However the knowledge is limited. Engineers are able to know both the electrical circuit and the differential equation that governs that circuit. The Engineering knowledge is a TOTAL knowledge of the physical phenomenon.

Simulation of Electrical Circs.

- To simulate Electrical circuits we use a online simulator:
 - <u>https://www.circuitlab.com/</u>
- The simulation circuit is shown in next figure!!

Simulation of Electrical Circs.

• Running simulation we have:

• Same as the result obtained from the Differential Eq. in Matlab

End of Class