Computer Engineering

Meeting 1: Introduction

Developed by José R. de la Cruz

Lecture 1 Review

The Engineering Design Process can be thought of as 8 steps:

- 1. Define the problem
- 2. Generate alternative solutions
- 3. Evaluate and select a solution
- 4. Detail the design
- 5. Defend the design
- 6. Manufacture and test
- 7. Evaluate the performance
- 8. Final design report

What is Computer Engineering?

- Computer Engineers design, develop, implement and maintain computer systems applying the methods of Engineering.
- Computer Systems are those structures that rely on computer software and hardware to perform a specific task.
- Computer Engineering stems from Electrical Engineering, but has been a separate profession since 1982.

What do Computer Engineers do?

- Engineer hardware
- Engineer software
- Engineer control systems
- Engineer CAD Applications
 - CAD: Computer Aided Design
- But, most important, as any Engineering discipline... WE SOLVE PROBLEMS!

What do Computer Engineers do?

 Watch this short video "created to be presented to students who would like to take their career as a Computer Engineers."

http://youtu.be/BIOONzSike0

Computer Engineering Topics

Computer Engineers must understand and apply the following disciplines:

- Logic Circuits
- Electric circuits
- Electronics
- Programming
- Computer Architecture
- Microprocessors and microcontrollers

Binary Logic

- Computer Engineers use binary logic in their everyday endeavors.
- Binary logic allows the Engineer to describe a process or situation using a simple mathematical model.
- In binary logic, states can have two values:
 TRUE or FALSE; 1 or 0.
- Three main operations: AND, OR & NOT.

Binary Logic

- NOT is UNARY operator:
 - If X = 0, then NOT X = 1 and vice-versa
 - Also represented as !X or X' or \overline{X}
- AND (*) is binary operator:

X	Y	X * Y
0	0	0
0	1	0
1	0	0
1	1	1

Binary Logic

OR (+) is binary operator:

X	Y	X + Y
0	0	0
0	1	1
1	0	1
1	1	1

- Binary operators allow for logic calculations in order to interpret and solve problems.
- Example: Z = X + (X * Y) + Y'

- Computer Engineers deal with many number systems, such as:
 - Binary: two values; 1 or 0
 - Octal: eight values; 0, 1, 2, 3, 4, 5, 6, 7
 - Decimal: ten values; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Hexadecimal: sixteen values;
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Even the English alphabet can be interpreted as a 26 value number system!

Number system conversion examples

Convert 16₁₀ to its binary equivalent

$$16_{10} = 1 \times 10 + 6 \times 1$$

 $16_{10} = 10000_{2}$

• Convert 16_{10} to its octal equivalent $16_{10} = 20_8$

Convert 16₁₀ to its hexadecimal equivalent

$$16_{10} = 10_{16}$$

Number system conversion examples

- Convert 16_{16} to its binary equivalent $16_{16} = 00010110_2$
- Convert 16_{16} to its octal equivalent $16_{16} = 26_8$
- Convert 16₁₆ to its decimal equivalent

$$16_{16} = 1 \times 16 + 6 \times 1$$

 $16_{16} = 22_{10}$

Useful powers of 2

$$-2^0 = 1_{10}$$

$$-2^1=2_{10}$$

$$-2^2=4_{10}$$

$$-2^3 = 8_{10}$$

$$-2^4 = 16_{10}$$

$$-2^5 = 32_{10}$$

$$-2^6 = 64_{10}$$

$$-2^7 = 128_{10}$$

Powers of 2

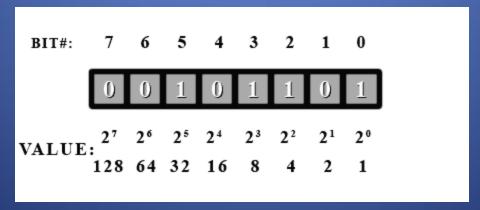
$$-2^8 = 256_{10}$$

$$-2^9 = 512_{10}$$

- Kilo (KB) =
$$2^{10}$$
 = 1,024₁₀

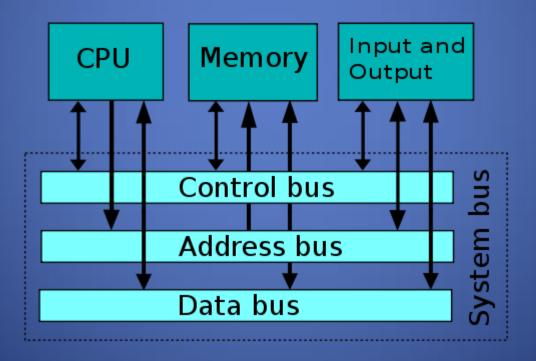
$$-$$
 Mega (MB) = $2^{20} > 1.0 \times 10^6$

$$-$$
 Giga (GB) = $2^{30} > 1.0 \times 10^9$


$$-$$
 Tera (TB) = $2^{40} > 1.0 \times 10^{12}$

$$-$$
 Peta (PB) = $2^{50} > 1.0 \times 10^{15}$

$$-$$
 Exa (EB) = $2^{60} > 1.0 \times 10^{18}$


Bits and Bytes

- In computer lingo we refer to bits and bytes
- A bit, or binary digit, holds or represents one of two values: 0 or 1
- A byte represents the basic storage structure for computer systems. It is an array, or collection, of 8 consecutive bits

The Von Neumann Architecture

 The Von Neumann Architecture represents how modern computers are organized.

The Von Neumann Architecture

- In the Von Neumann Architecture the CPU, or Central Processing Unit, is composed of four main parts:
 - ALU: Arithmetic Logic Unit, performs binary arithmetic operations and comparisons
 - Control Unit: Maintains 'order' by allowing access to buses
 - Registers: Hold the data and operations that are to be performed by the CPU
 - System, Data, and Control Buses: the cables that join all sections in order to transfer data

The Von Neumann Architecture

- The other two main 'parts' of the architecture are:
 - Memory: Where programs and data are stored before reaching the CPU. Memory is managed by the operating system (OS).
 - Input/Output devices, or IO devices, also called peripherals. Examples are: monitors, printers, mouse, speakers, microphones, etc.
- The architecture is a layered one, in which the CPU 'communicates' with the outside world via the Memory.

- In order to gat a "taste" for Computer Engineering, we will develop a simple project using a pseudo programming language, HTML
- HTML: Hypertext Markup Language
- HTML is the "language" of computer over the World Wide Web (WWW)
- You will be split in teams of three or four students each

- Using the basic HTML structures, your team will develop a 5 page Web site.
- You will implement this project by using HTML, CSS and JavaScript
- CSS: Cascading Style Sheets, used to format how the Web page is displayed
- JavaScript: Scripting language developed to enhance Web pages with dynamic activity

- The five page Web site will comprise:
 - A home or index page
 - An 'About' page where a picture and short description of each student will be posted
 - A 'Services' page where your team will detail the services you offer to the public
 - A 'Contact' page where you will inform the public how to contact your team
 - A 'Links' page where your team will showcase links to your favorite Web sites (HINT: Include Poli's Web site as one of them)
- The project will be presented in our 5th session, which is the last class meeting for the module

- One of your major resources for information on HTML, CSS and JavaScript is:
 - www.w3schools.com
- Download <u>Notepad++</u> to develop your HTML,
 CSS and JavaScript.
- All files created must be readable with Notepad or a regular text editor.
- DO NOT USE Microsoft's Word or Visual Studio

- Remember, this project will be one of your main grading sources for this module.
- Get together with your team members and perform a brainstorming session.
- Implement the Engineering Design Process guidelines presented in the course.
- It will be a fun learning experience!

Next Meeting

- Visit the <u>W3Schools Web site</u> to start learning about HTML.
- Meet with your team members to discuss the project. Make a plan and assign responsibilities to each team member.
- The next topic covers Software Engineering disasters, and how to avoid them.

Questions

