EE 1130

Freshman Eng. Design for

 Electrical and Computer Eng.Signal Processing Module (DSP).

- Laplace Transform. Transfer Function.
- Filter Design with Zeros and Poles.

Simulink: Laplace Transform.

- Working with Differential Equations (DE) is not easy. Laplace Transform allows exchange DE for something called Transfer Function (TF). The TF gives us a direct expression of Input/Output that the DE is not able to.

$$
R C \dot{y}+y=x
$$

- Also, it allows us to have an direct relation input/output!!

$$
R C \frac{d y}{d t}+y(t)=x(t)
$$

- Aplying Laplace:

$$
R C s Y(s)+Y(s)=X(s)
$$

Simulink: Laplace Transform.

- Operating:

$$
\begin{aligned}
& R C s Y(s)+Y(s)=X(s) \\
& Y(s)(R C s+1)=X(s) \\
& Y(s)=\frac{1}{R C s+1} X(s)
\end{aligned}
$$

- We could easily implement this in Simulink!!!
- The multiplier of $X(s)$ is called Transfer Function.

$$
H(s)=\frac{1}{R C s+1}
$$

Simulink: Laplace Transform.

- Double click on Transfer Fcn to open options as shown below:
- Simulating:

Simulink: Signal Processing.

- Last lecture we ended up with a noisy signal as next figure shows:

$x(t)=\sin (2 \pi 1 t)+0.2 \sin (2 \pi 60 t)$

Simulink: Signal Processing.

- We will insert a system that will filter out the ripple.
- First option is to insert from the continuous library group a Transfer Function block.
- We also add a Mux from Signal Routing library group.

1/23/2014
EE 1130

Simulink: Signal Processing.

- We insert the Transfer Function after the summator and before the Mux.
- The Mux will allow the Scope to show two traces:

- Now, hit play and see:

Simulink: Signal Processing.

- Now, hit play and see:
- Somehow we cleaned the signal, but we need to amplify its gain by a factor of 4 . We open the transfer function and set 4 the numerator to do this.

Simulink: Signal Processing.

- Somehow we cleaned the signal, but we need to amplify its gain by a factor of 4 . We open the transfer function and set 4 the numerator to do this.

Simulink: Signal Processing.

- We have cleaned the signal, but introduced a time delay (time shift). This is common in any kind of filters.

Simulink: Signal Processing.

- Now, lets design a filter that particularly eliminates the signal of 60 Hz . We do that using the Zero-Pole Transfer function

Simulink: Signat Processing.

- When studying Filter Theory you will learn that the roots of the numerator (called zeros) must be $s=2 \pi 60 j$ where 60 is the frequency to eliminate at the output.

Simulink: Signat Processing.

- But the coefficients of the numerator are some of the values of the Electrical Components.
- Remember, for the RC circuit we had:

$$
\begin{aligned}
& H(s)=\frac{1}{s+1 / \tau} \\
& Y(s)=\frac{1}{s+1 / \tau} X(s) \\
& Y(s) s+\frac{1}{R C} Y(s)=X(s) \\
& \frac{d y}{d t}+\frac{1}{R C} y(t)=x(t)
\end{aligned}
$$

Simulink: Signal Processing.

- But the coefficients of the numerator are some of the values of the Electrical Components or amplifier gains.
- However, we can not have imaginary coefficients, because they are component values or amplifier gains that MUST BE REAL.
- We need to do a mathematical trick to convert imaginary numbers into real numbers!!
- COMPLEX CONJUGATE
- $(a+j b)(a-j b)=a^{2}+b^{2}$ eso es debido a que $-j^{2}=1$

Simulink: Signal Processing.

- When studying Filter Theory you will learn that the roots of the numerator must be ($s-2 \pi 60 j$) and $(s+2 \pi 60 j)$. The use of complex conjugated roots is to have real coefficients because:

$$
(s-2 \pi 60 j)(s+2 \pi 60 j)=s^{2}+4 \pi^{2} 60^{2}
$$

- At the denominator we just set roots to.

$$
(s+340)(s+360)
$$

- If you set smaller roots, the output becomes too large. Please try other values to check out by yourself

Simulink: Signal Processing.

- The final Transfer Function that solve our problem is:

$$
H(s)=\frac{s^{2}+4 \pi^{2} 60^{2}}{(s+340)(s+360)}
$$

- Now, we simulate this in Simulink

Simulink: Signal Processing.

- Now we hit play and compare input and output in the Scope

Simulink: Signal Processing.

- The simulation shows we did the job
- Spectrum before the filter

Simulink: Signal Processing.

- The simulation shows we did the job:
- Spectrum after the filter

Simulink: Signal Processing.

- We notice the dark trace is completely clean of noise. We could add another trace to the scope and see both signals separated:

Simulink: Signal Processing.

- Once the simulation shows we solved the problem, we need to implement the Electrical Circuit.
- In order to do that, we need to modify the Transfer Function in a sum of simpler Transfer Functions of the type:

$$
H_{\text {simple }}(s)=\frac{G}{(\tau s+1)}
$$

- This is done with Partial Fraction Expansion:

$$
H(s)=\frac{s^{2}+4 \pi^{2} 60^{2}}{(s+340)(s+360)}=\frac{R_{1}}{s+340}+\frac{R_{2}}{s+360}
$$

- Matlab calculate the residues very fast:

Simulink: Signat Processing.

- Matlab calculate the residues very fast:

$$
H(s)=\frac{s^{2}+4 \pi^{2} 60^{2}}{(s+340)(s+360)}=\frac{-1.35861 * 10^{4}}{s+360}+\frac{1.2886 * 10^{4}}{s+340}
$$

Simulink: Signal Processing.

- One more modification yields:

$$
H(s)=\frac{-37.7}{\frac{1}{360} s+1}+\frac{37.9}{\frac{1}{340} s+1}
$$

- Each term correspond to a RC circuit:

$$
H_{\text {simple }}(s)=\frac{G_{1}}{\left(R_{1} C_{1} s+1\right)}+\frac{G_{2}}{\left(R_{2} C_{2} s+1\right)}
$$

Simulink: Signal Processing.

- Implementation:

$$
H(s)=\frac{-37.7}{\frac{1}{360} s+1}+\frac{37.9}{\frac{1}{340} s+1}
$$

Simulink: Signal Processing.

- From the Electrical Schematics we build the physical layout:
- We obtain something like:

Simulink: Signal Processing.

- From the physical layout:
- we build the PCB (Printed Circuit Board)
- We solder the components.

- Solder the cables.
- Then we test!!!

Simulink: Signal Processing.

- We generate the final report with our findings, to assess that the circuit does what we intended it to do.

End of Class

