EE 1130

Freshman Eng. Design for

 Electrical and Computer Eng.Class 3

Signal Processing Module (DSP).

- Differential Equations.
- Laplace Transform. Transfer Function.
- Simulink with Transfer Functions. Zeros, Poles.

Simulink: Differential Equations.

- Any Linear Time Invariant system could be modeled as the solution of a differential equation (DE) .
- In the case of Low Pass RC filter shown in next figure:

- The Differential Equation is:

$$
R C \dot{y}+y=x
$$

Simulink: Differential Equations.

- Next is an algebraic equation (instant equation).

$$
y(t)=2 x(t)
$$

- A differential equation has into account velocities!!!

$$
K \frac{d y}{d t}+y(t)=2 x(t)
$$

Simulink: Differential Equations.

- The circuit analysis is shown in next figure:

$$
i_{R}(t)=\frac{v_{R}(t)}{R}
$$

$$
\begin{array}{r}
v_{C}(t)=\frac{1}{C} \int_{0}^{t} i_{C}(t) d t \\
i_{C}(t)=C \frac{d v_{C}}{d t}
\end{array}
$$

Simulink: Differential Equations.

- The circuit analysis is s

$$
x(t)=\left(C \frac{d y}{d t}\right) R+y(t)
$$

$$
R C \frac{d y}{d t}+y(t)=x(t)
$$

Simulink: Differential Equations.

$$
R C \dot{y}+y=x
$$

- Where y with the dot is the first derivative of $y(t)$ and x is $x(t)$. R and C are the values of the Resistor and Capacitor respectively.
- The Differential Equation could be simulated with Simulink.
- However, the Differential Equation must be modified to an Integral Equation, since integrator blocks are more used than derivative blocks.

$$
\int(R C \dot{y}+y) d t=\int x d t
$$

Simulink: Differential Equations.

- The integral is linear:

$$
\begin{gathered}
R C \int \dot{y} d t+\int y d t=\int x d t \\
R C y=\int x d t-\int y d t \\
y=\frac{1}{R C} \int(x-y) d t \\
y=\int\left(\frac{1}{R C} x-\frac{1}{R C} y\right) d t
\end{gathered}
$$

Simulink: Differential Equations.

- The block diagram could be implemented from this equation:

$$
y=\int\left(\frac{1}{R C} x-\frac{1}{R C} y\right) d t
$$

Simulink: Differential Equations.

- To insert the Step and Scope blocks we do:

Simulink: Differential Equations.

- To insert the Integrator block we do:

Simulink: Differential Equations.

- Once all elements in the Model, we make the connections:

- To flip the Gain1 block we type control+I

Simulink: Differential Equations.

- Double click on each gain block and change the 1 to $1 /(\mathrm{R} * \mathrm{C})$ at the first block and $-1 /(\mathrm{R} * \mathrm{C})$ at the second.
- Type $\mathrm{C}=1$ and $\mathrm{R}=1$ at the command window to define the variables R and C.

Simulink: Differential Equations.

- To see both traces in one scope we add the MUX.

Simulink Library Browser	$-\square \times$
File Edit View Help	
$\square \square>$ Enter search term	
Libraries	y: Simulink/Signal Routing \mid \|
Sirmulink Commonly Used Blocks Continuous Discontinuities Discrete Logic and Bit Operations Lookup Tables Math Operations Model Verification Model-Mide Utilities Ports \& Subsystems Signal Attributes Signal Routing .- Sinks Sources User-Defined Functions . Additional Math \& Discrete Aerospace Blockset Communications System... Computer Vision System... Control Systern Toolbox DSP Systern Toolbox Data Acquisition Toolbox EDA. Sirmulator Link Embedded Coder Fuzzy Logic Toolbox Gauges Blockset	[A] [A\} Merge Multiport Swito Mux Selector

Simulink: Differential Equations.

- Once all connected, variables defined in command window, we hit play and double click on the scope block to open the scope screen.

End of Class

