EE 1130

Freshman Eng. Design for

Electrical and Computer Eng.
Class 3
Signal Processing Module (DSP).

- Differential Equations.
- Laplace Transform. Transfer Function.
- Simulink with Transfer Functions. Zeros, Poles.

Simulink: Differential Equations.

- Any Linear Time Invariant system could be modeled as the solution of a differential equation (DE) .
- In the case of Low Pass RC filter shown in next figure:

- The Differential Equation is:

$$
R C \dot{y}+y=x
$$

Simulink: Differential Equations.

- A differential equation is not instant.

$$
y(t)=2 x(t)
$$

- A differential equation has into account velocities!!!

$$
K \frac{d y}{d t}+y(t)=2 x(t)
$$

Simulink: Differential Equations.

- The circuit analysis is shown in next figure:

$$
i_{R}(t)=\frac{v_{R}(t)}{R} \quad i_{C}(t)=C \frac{d v_{C}}{d t}
$$

Simulink: Differential Equations.

- The circuit analysis is s

$$
x(t)=\left(C \frac{d y}{d t}\right) R+y(t)
$$

$$
R C \frac{d y}{d t}+y(t)=x(t)
$$

Simulink: Differential Equations.

$$
R C \dot{y}+y=x
$$

- Where y with the dot is the first derivative of $y(t)$ and x is $x(t)$. R and C are the values of the Resistor and Capacitor respectively.
- The Differential Equation could be simulated with Simulink.
- However, the Differential Equation must be modified to an Integral Equation, since integrator blocks are more used than derivative blocks.

$$
\int(R C \dot{y}+y) d t=\int x d t
$$

Simulink: Differential Equations.

- The integral is linear:

$$
\begin{gathered}
R C \int \dot{y} d t+\int y d t=\int x d t \\
R C y=\int x d t-\int y d t \\
y=\frac{1}{R C} \int(x-y) d t \\
y=\int\left(\frac{1}{R C} x-\frac{1}{R C} y\right) d t
\end{gathered}
$$

Simulink: Differential Equations.

- The block diagram could be implemented from this equation:

Simulink：Differential Equations．

－To insert the Step and Scope blocks we do：

$\begin{array}{ll}\text { 國Simulink Library Browser } & -\square \times \text {－} \\ \text { File Edit View Help }\end{array}$	
［ \％Enter search term	－槙 锺
Libraries	Library：Simulink／Sinks
Simulink Commonly Used Blocks Continuous －Discontinuities ．．．Discrete －．．Logic and Bit Operations －．Lookup Tables Math Operations －Model Verification －－Model－Wide Ltilities －Ports \＆Subsysterns ．－．Signal Attributes －．－Signal Routing ．－Sinks －．Sources User－Defined Functions Additional Math \＆Discrete ＋－围 Aerospace Blockset ＋Communications System．．． ＋+ －䦽 Computer Vision System．．． … Control System Toolbox ＋+ DSP System Toolbox －．．．Data Acquisition Toolbox ＋+ 速 EDA．Simulator Link	Display Floating Scope Out1 Scope Stop Simulation Terminator untitled mat To File To Wronspace XY Graph

Simulink: Differential Equations.

- To insert the Integrator block we do:

Simulink: Differential Equations.

- Once all elements in the Model, we make the connections:

- To flip the Gain1 block we type control+I

Simulink: Differential Equations.

- Double click on each gain block and change the 1 to $1 /(\mathrm{R} * \mathrm{C})$ at the first block and $-1 /(\mathrm{R} * \mathrm{C})$ at the second.
- Type $\mathrm{C}=1$ and $\mathrm{R}=1$ at the command window to define the variables R and C.

Simulink: Differential Equations.

- To see both traces in one scope we add the MUX.

Simulink Library Browser	$-\square \times$
File Edit View Help	
$\square \square>$ Enter search term	
Libraries	y: Simulink/Signal Routing \mid \|
Sirmulink Commonly Used Blocks Continuous Discontinuities Discrete Logic and Bit Operations Lookup Tables Math Operations Model Verification Model-Mide Utilities Ports \& Subsystems Signal Attributes Signal Routing .- Sinks Sources User-Defined Functions . Additional Math \& Discrete Aerospace Blockset Communications System... Computer Vision System... Control Systern Toolbox DSP Systern Toolbox Data Acquisition Toolbox EDA. Sirmulator Link Embedded Coder Fuzzy Logic Toolbox Gauges Blockset	[A] [A\} Merge Multiport Swito Mux Selector

Simulink: Differential Equations.

- Once all connected, variables defined in command window, we hit play and double click on the scope block to open the scope screen.

Simulink: Laplace Transform.

- Working with DE is not easy. Laplace Transform allows avoid DE.
- Also, it allows us to have an analytic relation input/output!!

$$
\begin{gathered}
R C \dot{y}+y=x \\
R C \frac{d y}{d t}+y(t)=x(t)
\end{gathered}
$$

- Aplying Laplace:

$$
R C s Y(s)+Y(s)=X(s)
$$

Simulink: Laplace Transform.

- Operating:

$$
\begin{aligned}
& Y(s)(R C s+1)=X(s) \\
& Y(s)=\frac{1}{R C s+1} X(s)
\end{aligned}
$$

- We could easily implement this in Simulink!!!
- The multiplier of $X(s)$ is called Transfer Function.

$$
H(s)=\frac{1}{R C s+1}
$$

Simulink: Laplace Transform.

- Double click on Transfer Fcn to open options as shown below:
- Simulating:

End of Class

