CECS2200-20-p2c2 #### S6: Lunes 6 enero - Variables (basic types, declaration, initialization, scope rules, casting), constants, literal, keywords - Standard library - Arithmetic operators (+, -, *, /, %), precedence, and association - Arithmetic expressions - Math Library # Standard Library: No lo vamos a dar Arithmetic Operators:+ - * / % Table 2-9 Fundamental Arithmetic Operators | Operator | Meaning | Example | |----------|----------------|--------------------------------| | + | Addition | total = cost + tax; | | _ | Subtraction | <pre>cost = total - tax;</pre> | | * | Multiplication | tax = cost * rate; | | / | Division | salePrice = original / 2; | | % | Modulus | remainder = value % 3; | #### Precedendia: Table 3-1 Precedence of Arithmetic Operators (Highest to Lowest) | () | | | | Expressions within parentheses are evaluated first | |-----|---|---|--------|--| | - | | | unary | Negation of a value, e.g., -6 | | * | / | 8 | binary | Multiplication, division, and modulus | | + | - | | binary | Addition and subtraction | ## Asociación: Table 3-3 Associativity of Arithmetic Operators | Operator | Associativity | | |--------------------|---------------|--| | (unary negation) - | Right to left | | | * / % | Left to right | | | + - | Left to right | | # Arithmetic Expressions: | T - 1 - 2 - 4 | | A TOTAL ECONOMISSA PRO | - | |---------------|------|------------------------|-------------| | Table 3-4 | More | Arithmetic | Expressions | | Expression | Value | | |-----------------------|-------|--| | (5 + 2) * 4 | 28 | | | 10 / (5 - 3) | 5 | | | 8 + 12 * (6 - 2) | 56 | | | (4 + 17) % 2 - 1 | 0 | | | (6 - 3) * (2 + 7) / 3 | 9 | | #### Table 3-5 Algebraic and C++ Multiplication Expressions | Algebraic Expression | Operation | C++ Equivalent | | | | | |----------------------|-------------------|----------------|--|--|--|--| | 6B | 6 times B | 6 * B | | | | | | (3)(12) | 3 times 12 | 3 * 12 | | | | | | 4xy | 4 times x times y | 4 * x * y | | | | | ### Table 3-6 Algebraic and C++ Expressions | Algebraic Expression | C++ Expression | |-------------------------|-------------------------------| | $y = 3\frac{x}{2}$ | y = x / 2 * 3; | | z = 3bc + 4 | z = 3 * b * c + 4; | | $a = \frac{3x+2}{4a-1}$ | a = (3 * x + 2) / (4 * a - 1) | # **No Exponents Please!** Unlike many programming languages, C++ does not have an exponent operator. Raising a number to a power requires the use of a *library function*. The C++ library isn't a place where you check out books, but a collection of specialized functions. Think of a library function as a "routine" that performs a specific operation. One of the library functions is called pow, and its purpose is to raise a number to a power. Here is an example of how it's used: area = $$pow(4.0, 2);$$ # Math Library: 4 #include <cmath> // Needed for the pow function Table 3-13 Selected Mathematical Library Functions | Function | Example | | | Description | | | | | | | | | | | |----------|---------|----------|-----|---|-------|---------|-------|-------|--|-----|-----|--|--|--| | abs | | bs(x); | | Returns the absolute value of the argument. The argument and the return value are integers. | | | | | | | | | | | | cos | у = с | eos(x); | | Returns the cosine of the argument. The argument should be angle expressed in radians. The return type and the argument are doubles. | | | | | | | | | | | | exp | у = е | exp(x); | | Computes the exponential function of the argument, which i
The return type and the argument are doubles. | | | | | | | S X | | | | | fmod | y = f | mod(x, | z); | Returns, as a double, the remainder of the first argument divide
by the second argument. Works like the modulus operator, but the
arguments are doubles. (The modulus operator only works with
integers.) Take care not to pass zero as the second argument.
Doing so would cause division by zero. | | | | | | | the | | | | | log | y = 1 | .og(x); | | Returns the natural logarithm of the argument. The return type and the argument are doubles. | | | | | | | ype | | | | | log10 | y = 1 | .og10(x) | ; | Returns the base-10 logarithm of the argument. The return type and the argument are doubles. | | | | | | | | | | | | | | | | and the | argum | ciii ai | . uou | uics. | | | | | | | | round | y = r | ound(x) | ; | Returns the argument rounded to the nearest whole number. T return value is an integer. | | | | | | The | | | | | | sin | y = s | in(x); | | Returns the sine of the argument. The argument should be an angle expressed in radians. The return type and the argument are doubles. | | | | | | | | | | | | sqrt | y = s | qrt(x); | | Returns the square root of the argument. The return type and argument are doubles. The argument must be zero or greater. | | | | | | | | | | | | tan | y = t | an(x); | | Returns the tangent of the argument. The argument should be
an angle expressed in radians. The return type and the argument
are doubles. | | | | | | | | | | | # Ejemplo: cmath library #### Program 3-30 ``` 1 // This program inputs the lengths of the two sides of a right 2 // triangle, then calculates and displays the length of the hypotenuse. 3 #include <iostream> 4 #include <cmath> // Needed to use the sqrt function 5 using namespace std; 7 int main() 9 double a, b, c; 10 11 // Get the length of the two sides 12 cout << "Enter the length of side a: "; cin >> a; 13 cout << "Enter the length of side b: "; 14 15 cin >> b; 16 // Compute and display the length of the hypotenuse 17 c = sqrt(pow(a, 2.0) + pow(b, 2.0)); 18 19 cout << "The length of the hypotenuse is "; 20 21 cout << c << endl; 22 return 0; 23 } ```