CECS2200-20-p2c2

S6: Lunes 6 enero

- Variables (basic types, declaration, initialization, scope rules, casting), constants, literal, keywords
- Standard library
- Arithmetic operators (+, -, *, /, %), precedence, and association
- Arithmetic expressions
- Math Library

Standard Library: No lo vamos a dar Arithmetic Operators:+ - * / %

Table 2-9 Fundamental Arithmetic Operators

Operator	Meaning	Example
+	Addition	total = cost + tax;
_	Subtraction	<pre>cost = total - tax;</pre>
*	Multiplication	tax = cost * rate;
/	Division	salePrice = original / 2;
%	Modulus	remainder = value % 3;

Precedendia:

Table 3-1 Precedence of Arithmetic Operators (Highest to Lowest)

()				Expressions within parentheses are evaluated first
-			unary	Negation of a value, e.g., -6
*	/	8	binary	Multiplication, division, and modulus
+	-		binary	Addition and subtraction

Asociación:

Table 3-3 Associativity of Arithmetic Operators

Operator	Associativity	
(unary negation) -	Right to left	
* / %	Left to right	
+ -	Left to right	

Arithmetic Expressions:

T - 1 - 2 - 4		A TOTAL ECONOMISSA PRO	-
Table 3-4	More	Arithmetic	Expressions

Expression	Value	
(5 + 2) * 4	28	
10 / (5 - 3)	5	
8 + 12 * (6 - 2)	56	
(4 + 17) % 2 - 1	0	
(6 - 3) * (2 + 7) / 3	9	

Table 3-5 Algebraic and C++ Multiplication Expressions

Algebraic Expression	Operation	C++ Equivalent				
6B	6 times B	6 * B				
(3)(12)	3 times 12	3 * 12				
4xy	4 times x times y	4 * x * y				

Table 3-6 Algebraic and C++ Expressions

Algebraic Expression	C++ Expression
$y = 3\frac{x}{2}$	y = x / 2 * 3;
z = 3bc + 4	z = 3 * b * c + 4;
$a = \frac{3x+2}{4a-1}$	a = (3 * x + 2) / (4 * a - 1)

No Exponents Please!

Unlike many programming languages, C++ does not have an exponent operator. Raising a number to a power requires the use of a *library function*. The C++ library isn't a place where you check out books, but a collection of specialized functions. Think of a library function as a "routine" that performs a specific operation. One of the library functions is called pow, and its purpose is to raise a number to a power. Here is an example of how it's used:

area =
$$pow(4.0, 2);$$

Math Library:

4 #include <cmath> // Needed for the pow function

Table 3-13 Selected Mathematical Library Functions

Function	Example			Description										
abs		bs(x);		Returns the absolute value of the argument. The argument and the return value are integers.										
cos	у = с	eos(x);		Returns the cosine of the argument. The argument should be angle expressed in radians. The return type and the argument are doubles.										
exp	у = е	exp(x);		Computes the exponential function of the argument, which i The return type and the argument are doubles.							S X			
fmod	y = f	mod(x,	z);	Returns, as a double, the remainder of the first argument divide by the second argument. Works like the modulus operator, but the arguments are doubles. (The modulus operator only works with integers.) Take care not to pass zero as the second argument. Doing so would cause division by zero.							the			
log	y = 1	.og(x);		Returns the natural logarithm of the argument. The return type and the argument are doubles.							ype			
log10	y = 1	.og10(x)	;	Returns the base-10 logarithm of the argument. The return type and the argument are doubles.										
				and the	argum	ciii ai	. uou	uics.						
round	y = r	ound(x)	;	Returns the argument rounded to the nearest whole number. T return value is an integer.						The				
sin	y = s	in(x);		Returns the sine of the argument. The argument should be an angle expressed in radians. The return type and the argument are doubles.										
sqrt	y = s	qrt(x);		Returns the square root of the argument. The return type and argument are doubles. The argument must be zero or greater.										
tan	y = t	an(x);		Returns the tangent of the argument. The argument should be an angle expressed in radians. The return type and the argument are doubles.										

Ejemplo: cmath library

Program 3-30

```
1 // This program inputs the lengths of the two sides of a right
2 // triangle, then calculates and displays the length of the hypotenuse.
3 #include <iostream>
4 #include <cmath>
                           // Needed to use the sqrt function
5 using namespace std;
7 int main()
9
      double a, b, c;
10
11
      // Get the length of the two sides
12
      cout << "Enter the length of side a: ";
      cin >> a;
13
      cout << "Enter the length of side b: ";
14
15
      cin >> b;
16
      // Compute and display the length of the hypotenuse
17
      c = sqrt(pow(a, 2.0) + pow(b, 2.0));
18
19
      cout << "The length of the hypotenuse is ";
20
21
      cout << c << endl;
22
      return 0;
23 }
```