Engi231020p2c4

Tuesday, April 23, 2013
4:17 PM

|
53 Using the while Loop for Input Validation

{ CONCEPT: The while loop can be used to create input routines that repeat until
acceptable data is entered.

Perhaps the most famous saying of the computer industry is “garbage in, garbage out.”
The integrity of a program’s output is only as good as its input, so you should try to make
sure garbage does not go into your programs. Input validation is the process of inspecting
data given to a program by the user and determining if it is valid. A good program should
give clear instructions about the kind of input that is acceptable, and not assume the user
has followed those instructions.

The while loop is especially useful for validating input. If an invalid value is entered, a
loop can require that the user re-enter it as many times as necessary. For example, the
following loop asks for a number in the range of 1 through 100:

Figure 5-3

Read the first
value

Is the Yes)
value Display an .| Read another
invalid? error message value

|
55 The do-while Loop

1 CONCEPT: The do-while loop is a post test loop, which means its expression is
tested after each iteration.

In addition to the while loop, C++ also offers the do-while loop. The do-while loop
looks similar to a while loop turned upside down. Figure 5-4 shows its format and a flow-
chart visually depicting how it works.

Engi Page 1

Figure 5-4

—|
do statement(s)
{ statement;
statement; l
// Place as many statements
// here as necessary. true
} while (condition);
false

As with the while loop, if there is only one conditionally executed statement in the loop
body, the braces may be omitted.

g
56 The for Loop

1 CONCEPT: The for loop is a pretest loop that combines the initialization, testing,
and updating of a loop control variable in a single loop header.

In general, there are two categories of loops: conditional loops and count-controlled loops.
A conditional loop executes as long as a particular condition exists. For example, an input
validation loop executes as long as the input value is invalid. When you write a conditional
loop, vou have no way of knowing the number of times it will iterate.

VideoNote
The for Loop Sometimes you know the exact number of iterations that a loop must perform. A loop

that repeats a specific number of times is known as a count-controlled loop. For exam-
ple, if a loop asks the user to enter the sales amounts for each month in the year, it will
iterate twelve times. In essence, the loop counts to twelve and asks the user to enter a
sales amount each time it makes a count. A count-controlled loop must possess three
elements:

1. It must initialize a counter variable to a starting value.

2. It must test the counter variable by comparing it to a final value. When the counter
variable reaches its final value, the loop terminates.

3. It must update the counter variable during each iteration. This is usually done by
incrementing the variable.

Count-controlled loops are so common that C++ provides a type of loop specifically for
them. It is known as the for loop. The for loop is specifically designed to initialize, test,
and update a counter variable. Here is the format of the for loop.

for (initialization; test; update)

{
statement;
statement;
// Place as many statements
// here as necessary.
}

As with the other loops you have used, if there is only one statement in the loop body, the
braces may be omitted.

Engi Page 2

Here is an example of a simple for loop that prints “Hello” five times:

for (count = 1; count <= 5; count++)
cout << "Hello" << endl;

In this loop, the initialization expression is count = 1, the test expression is count <= 5,
and the update expression is count++. The body of the loop has one statement, which is the
cout statement. Figure 5-5 illustrates the sequence of events that take place during the loop’s
execution. Notice that Steps 2 through 4 are repeated as long as the test expression is true.

Figure 5-6

Assign 1 to
count

cout Increment
statement count

g
58 Sentinels

1 CONCEPT: A sentinel is a special value that marks the end of a list of values.

Program 5-10, in the previous section, requires the user to know in advance the number of
days there are sales figures for. Sometimes the user has a list that is very long and doesn’t
know how many items there are. In other cases, the user might be entering several lists and
it is impractical to require that every item in every list be counted.

A technique that can be used in these situations is to ask the user to enter a sentinel at the
end of the list. A sentinel is a special value that cannot be mistaken as a member of the list
and signals that there are no more values to be entered. When the user enters the sentinel,
the loop terminates.

Program 5-11 provides an example of using an end sentinel. This program calculates the
total points earned by a soccer team over a series of games. It allows the user to enter the
series of game points, then enter —1 to signal the end of the list.

Ejercicios de clase:

Engi Page 3

LU ' R [LT I Y S P T S B S

R e e e = S
| = T Y N [T O Y N S Y %0 B Y o

22
23
24
23
26
27
28
29
30
31
3z
83
34
33
36
37
38
39
40
41
42
43
44
45
46

#include <iostream:>
using namespace std;
Hint main{) {

int mazCount;
int 1i;

J/oout << "Este programa calcula cuadrados de numeros del uno al gue el usuario entre. in™;
cout << "Este programa calcula cuadrados de numeros hasta que se

cout << "Por favor entre el numeroc: ";

cin »» maxCount:

while {maxCount < [} {
cout << "Error, entre un numero positivo: "
cin »» maxCount;

V//while

J/Usando do while para solucionar el problema
cout << "NumerchtCuadradoin”;

FE
for{i=1;i<=maxzCount; i++)
cout << 1 <<"\t"<w 171 << endl;

=/
IE
i=1;
dof
cout << 1 <<"VET<w 171 << endl;
i++;
twhile {i<=maxCount) ;
*/
JA1 = 1;
while {maxCount =0} {
cout << maxCount <<".L"<< maxCount*maxCount << endl;
Sl i+
cout << "Por favor entre otro numero {cero para salir): ";
cin »>»> maxCount;
while {maxCount < 0} {
cout << "Error, entre un numero positivo: ";
cin »> maxCount;
Y/ while
}
return [;

“}//main

Engi Page 4

entre un cero.\n";

C:\MinGW\bin>g++ ejemploWhileFor.cpp -0 ejemplolhileFor.exe

C:\HinGW\bin>ejemplolhileFor.exe
Este programa calcula cuadrados de numeros hasta que se entre un cero.
Por favor entre el numero: -1
Error, entre un numero positivo: -3
. entre un numero positivo: 3
Cuadrado

Por favor entre otro numero (cero para salir): -3
Error, entre un numero positivo:

2

Por favor entre otro numero {cero para salir): 0

C:\HinGW\bin>
4

Engi Page 5

